《(統(tǒng)考版)高考數(shù)學(xué)二輪專題復(fù)習(xí) 課時(shí)作業(yè)20 導(dǎo)數(shù)的簡單應(yīng)用 理(含解析)-人教版高三數(shù)學(xué)試題》由會員分享,可在線閱讀,更多相關(guān)《(統(tǒng)考版)高考數(shù)學(xué)二輪專題復(fù)習(xí) 課時(shí)作業(yè)20 導(dǎo)數(shù)的簡單應(yīng)用 理(含解析)-人教版高三數(shù)學(xué)試題(6頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、課時(shí)作業(yè)20 導(dǎo)數(shù)的簡單應(yīng)用
[A·基礎(chǔ)達(dá)標(biāo)]
1.若曲線y=在點(diǎn)處的切線的斜率為,則n=( )
A.2 B.3
C.1 D.5
2.函數(shù)f(x)=x++2ln x的單調(diào)遞減區(qū)間是( )
A.(-3,1) B.(0,1)
C.(-1,3) D.(0,3)
3.由曲線y=x2+1,直線y=-x+3,x軸正半軸與y軸正半軸圍成的圖形的面積為( )
A.3 B.
C. D.
4.[2020·昆明市三診一模]設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f′(x)的圖象如圖所示,則y=f(x)的圖象可能是( )
5.已知x=1是f(x)=[x2-(a+3
2、)x+2a+3]ex的極小值點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.(1,+∞) B.(-1,+∞)
C.(-∞,-1) D.(-∞,1)
6.[2020·四省八校第二次質(zhì)量檢測]已知數(shù)列{an}是公比q=x2dx的等比數(shù)列,且a3=a1·a2,則a10=________.
7.若函數(shù)f(x)=x3-12x在區(qū)間(k-1,k+1)上不是單調(diào)函數(shù),則實(shí)數(shù)k的取值范圍是________.
8.[2020·深圳市統(tǒng)一測試]函數(shù)f(x)是定義在(0,+∞)上的可導(dǎo)函數(shù),f′(x)為其導(dǎo)函數(shù),若xf′(x)+f(x)=(1-x)ex,且f(2)=0,則f(x)>0的解集為________
3、.
9.[2020·天津卷]已知函數(shù)f(x)=x3+kln x(k∈R),f′(x)為f(x)的導(dǎo)函數(shù).當(dāng)k=6時(shí),
(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)求函數(shù)g(x)=f(x)-f′(x)+的單調(diào)區(qū)間和極值.
10.設(shè)函數(shù)f(x)=-,g(x)=a(x2-1)-ln x(a∈R,e為自然對數(shù)的底數(shù)).
(1)證明:當(dāng)x>1時(shí),f(x)>0;
(2)討論g(x)的單調(diào)性.
[B·素養(yǎng)提升]
1.函數(shù)f(x)(x>0)的導(dǎo)函數(shù)f′(x),若xf′(x)+f(x)=ex,且f(1)=e,則( )
A.f(
4、x)的最小值為e B.f(x)的最大值為e
C.f(x)的最小值為 D.f(x)的最大值為
2.已知函數(shù)f(x)=x3-2x+ex-,其中(e是自然對數(shù)的底數(shù)).若f(a-1)+f(2a2)≤0,則實(shí)數(shù)a的取值范圍是____________.
3.已知函數(shù)f(x)=ln x-xex+ax(a∈R).
(1)若函數(shù)f(x)在[1,+∞)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(2)若a=1,求f(x)的最大值.
4.[2020·西安五校聯(lián)考]設(shè)f(x)=xln x-ax2+(2a-1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知
5、f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.
課時(shí)作業(yè)20 導(dǎo)數(shù)的簡單應(yīng)用
[A·基礎(chǔ)達(dá)標(biāo)]
1.解析:由題意y′==,∴y′|x=1==.∴n=5.故選D.
答案:D
2.解析:解法一 令f′(x)=1-+<0,得00,故排除A,C選項(xiàng);又f(1)=4
6、=,選B.
答案:B
4.解析:通解 因?yàn)樵?-3,-1)和(0,1)上f′(x)>0,在(-1,0)和(1,3)上f′(x)<0,所以函數(shù)y=f(x)在(-3,-1),(0,1)上單調(diào)遞增,在(-1,0),(1,3)上單調(diào)遞減,觀察各選項(xiàng)知,只有D符合題意.故選D.
優(yōu)解 由題圖知,y=f′(x)在x=-1的左側(cè)大于0、右側(cè)小于0,所以函數(shù)y=f(x)在x=-1處取得極大值,觀察各選項(xiàng)知,只有D符合題意,故選D.
答案:D
5.解析:依題意f′(x)=(x-a)(x-1)ex,它的兩個(gè)零點(diǎn)為x=1,x=a,若x=1是函數(shù)f(x)的極小值點(diǎn),則需a<1,此時(shí)函數(shù)f(x)在(a,1
7、)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,在x=1處取得極小值.故選D.
答案:D
6.解析:q=x2dx=x3=,因數(shù)a3=a1a2,所以a1q2=a1(a1q),a1=q=,所以a10=a1q9=.
答案:
7.解析:f′(x)=3x2-12,由f′(x)>0,得函數(shù)的增區(qū)間是(-∞,-2)或(2,+∞),由f′(x)<0,得函數(shù)的減區(qū)間是(-2,2),由于函數(shù)在(k-1,k+1)上不是單調(diào)函數(shù),所以k-1<-2
8、(1-x)ex,設(shè)F(x)=(ax+b)ex+c,則F′(x)=(ax+b+a)ex,所以,解得,所以F(x)=(2-x)ex+c,又F(2)=2f(2)=0,所以c=0,F(xiàn)(x)=(2-x)ex,f(x)=ex,由f(x)>0,得00的解集是(0,2).
答案:(0,2)
9.解析:(1)當(dāng)k=6時(shí),f(x)=x3+6ln x,故f′(x)=3x2+.可得f(1)=1,f′(1)=9,所以曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y-1=9(x-1),即y=9x-8.
(2)依題意,g(x)=x3-3x2+6ln x+,x∈(0,+∞).從而可得
9、
g′(x)=3x2-6x+-,整理可得g′(x)=.令g′(x)=0,解得x=1.
當(dāng)x變化時(shí),g′(x),g(x)的變化情況如表:
x
(0,1)
1
(1,+∞)
g′(x)
-
0
+
g(x)
極小值
所以,函數(shù)g(x)的單調(diào)遞減區(qū)間為(0,1),單調(diào)遞增區(qū)間為(1,+∞);g(x)的極小值為g(1)=1,無極大值.
10.解析:(1)證明:f(x)=,
令s(x)=ex-1-x,則s′(x)=ex-1-1,
當(dāng)x>1時(shí),s′(x)>0,所以s(x)在(1,+∞)上單調(diào)遞增,又s(1)=0,所以s(x)>0,
從而當(dāng)x>1時(shí),f(x)>0.
10、
(2)g′(x)=2ax-=(x>0),
當(dāng)a≤0時(shí),g′(x)<0,g(x)在(0,+∞)上單調(diào)遞減,
當(dāng)a>0時(shí),由g′(x)=0得x=.
當(dāng)x∈時(shí),g′(x)<0,g(x)單調(diào)遞減,
當(dāng)x∈時(shí),g′(x)>0,g(x)單調(diào)遞增.
[B·素養(yǎng)提升]
1.解析:設(shè)g(x)=xf(x)-ex,
所以g′(x)=f(x)+xf′(x)-ex=0,
所以g(x)=xf(x)-ex為常數(shù)函數(shù).
因?yàn)間(1)=1×f(1)-e=0,
所以g(x)=xf(x)-ex=g(1)=0,
所以f(x)=,f′(x)=,
當(dāng)01時(shí),f′(x)>0
11、,
所以f(x)min=f(1)=e.
答案:A
2.解析:函數(shù)f(x)的定義域?yàn)镽.由f(x)=x3-2x+ex-得f(-x)=(-x)3+2x+-ex=-f(x),所以f(x)是奇函數(shù),因?yàn)閒′(x)=3x2-2+ex+≥3x2-2+2=3x2≥0,當(dāng)且僅當(dāng)x=0時(shí)取等號,所以f(x)在R上單調(diào)遞增.不等式f(a-1)+f(2a2)≤0?f(a-1)≤-f(2a2)=f(-2a2)?a-1≤-2a2,解得-1≤a≤.故實(shí)數(shù)a的取值范圍是.
答案:
3.解析:(1)由題意知,f′(x)=-(ex+xex)+a=-(x+1)ex+a≤0在[1,+∞)上恒成立,所以a≤(x+1)ex-
12、在[1,+∞)上恒成立.令g(x)=(x+1)ex-,則g′(x)=(x+2)ex+>0,所以g(x)在[1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=2e-1.
所以a≤2e-1.
故實(shí)數(shù)a的取值范圍是(-∞,2e-1].
(2)當(dāng)a=1時(shí),f(x)=ln x-xex+x(x>0),
則f′(x)=-(x+1)ex+1=(x+1).
令m(x)=-ex,則m′(x)=--ex<0,
所以m(x)在(0,+∞)上單調(diào)遞減.
又m>0,m(1)<0,所以存在x0∈滿足m(x0)=0,即ex0=.
當(dāng)x∈(0,x0)時(shí),m(x)>0,f′(x)>0;當(dāng)x∈(x0,+∞)時(shí),m
13、(x)<0,f′(x)<0.
所以f(x)在(0,x0)上單調(diào)遞增,在(x0,+∞)上單調(diào)遞減.
所以f(x)max=f(x0)=ln x0-x0ex0+x0,
因?yàn)閑x0=,所以x0=-ln x0,所以f(x0)=-x0-1+x0=-1,所以f(x)max=-1.
4.解析:(1)由f′(x)=ln x-2ax+2a,可得g(x)=ln x-2ax+2a,x∈(0,+∞),
則g′(x)=-2a=,
當(dāng)a≤0時(shí),g′(x)>0,函數(shù)g(x)單調(diào)遞增.
當(dāng)a>0時(shí),若∈,則g′(x)>0,函數(shù)g(x)單調(diào)遞增,
若x∈,則g′(x)<0,函數(shù)g(x)單調(diào)遞減.
所以當(dāng)a≤0時(shí)
14、,函數(shù)g(x)的單調(diào)遞增區(qū)間為(0,+∞);
當(dāng)a>0時(shí),函數(shù)g(x)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)由(1)知,f′(1)=0.
①當(dāng)a≤0時(shí),g(x)在(0,+∞)上單調(diào)遞增,則f′(x)在(0,+∞)上單調(diào)遞增.
所以當(dāng)x∈(0,1)時(shí),f′(x)<0,f(x)單調(diào)遞減,
當(dāng)x∈(1,+∞)時(shí),f′(x)>0,f(x)單調(diào)遞增.
所以f(x)在x=1處取得極小值,不合題意.
②當(dāng)01,由(1)知f′(x)在上單調(diào)遞增,可得當(dāng)x∈(0,1)時(shí),f′(x)<0,x∈ 時(shí),f′(x)>0,所以f(x)在(0,1)上單調(diào)遞減,在上單調(diào)遞增,所以f(x)在x=1處取得極小值,不合題意.
③當(dāng)a=時(shí),=1,f′(x)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
所以當(dāng)x∈(0,+∞)時(shí),f′(x)≤0,f(x)單調(diào)遞減,不合題意.
④當(dāng)a>時(shí),0<<1,當(dāng)x∈時(shí),f′(x)單調(diào)遞減,所以f′(x)>0,f(x)單調(diào)遞增,當(dāng)x∈(1,+∞)時(shí),
f′(x)單調(diào)遞減,所以f′(x)<0,f(x)單調(diào)遞減,
所以f(x)在x=1處取得極大值,符合題意.
綜上可知,實(shí)數(shù)a的取值范圍為.