欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

(課標專用 5年高考3年模擬A版)高考數(shù)學 第八章 立體幾何 3 直線、平面平行的判定與性質試題 文-人教版高三數(shù)學試題

上傳人:文*** 文檔編號:240558129 上傳時間:2024-04-15 格式:DOCX 頁數(shù):29 大小:970.97KB
收藏 版權申訴 舉報 下載
(課標專用 5年高考3年模擬A版)高考數(shù)學 第八章 立體幾何 3 直線、平面平行的判定與性質試題 文-人教版高三數(shù)學試題_第1頁
第1頁 / 共29頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 第八章 立體幾何 3 直線、平面平行的判定與性質試題 文-人教版高三數(shù)學試題_第2頁
第2頁 / 共29頁
(課標專用 5年高考3年模擬A版)高考數(shù)學 第八章 立體幾何 3 直線、平面平行的判定與性質試題 文-人教版高三數(shù)學試題_第3頁
第3頁 / 共29頁

本資源只提供3頁預覽,全部文檔請下載后查看!喜歡就下載吧,查找使用更方便

20 積分

下載資源

資源描述:

《(課標專用 5年高考3年模擬A版)高考數(shù)學 第八章 立體幾何 3 直線、平面平行的判定與性質試題 文-人教版高三數(shù)學試題》由會員分享,可在線閱讀,更多相關《(課標專用 5年高考3年模擬A版)高考數(shù)學 第八章 立體幾何 3 直線、平面平行的判定與性質試題 文-人教版高三數(shù)學試題(29頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、直線、平面平行的判定與性質 挖命題 【考情探究】 考點 內容解讀 5年考情 預測熱度 考題示例 考向 關聯(lián)考點 直線、平面平行的判定與性質 ①了解直線與平面、平面與平面間的位置關系;②認識和理解空間中直線、平面平行的有關性質和判定;③能運用公理、定理和已獲得的結論證明一些空間位置關系的簡單命題 2017課標全國Ⅰ,6,5分 線面平行的判定 — ★★★ 2016課標全國Ⅲ,19,12分 線面平行的判定,三棱錐的體積 線線平行的判定,體積公式 2016四川,17,12分 線面平行與面面垂直的判定 探索性問題的求解 分析解讀  從近幾年的高考試

2、題來看,高考對本節(jié)內容的考查比較平穩(wěn),一般通過對圖形或幾何體的認識,考查直線與平面平行以及平面與平面平行的判定和性質,題型以解答題為主,偶爾也會出現(xiàn)在小題之中,以命題判斷居多,難度適中,主要考查直線、平面平行間的轉化思想,同時也考查學生的空間想象能力以及邏輯推理能力,分值約為6分. 破考點 【考點集訓】 考點 直線、平面平行的判定與性質 1.已知m,n是兩條不同的直線,α,β是兩個不同的平面,下列說法中正確的是(  ) A.若m?α,n?β,m∥n,則α∥β B.若m?α,n?β,α∥β,則m∥n C.若m?α,n?β,α∥β,且m,n共面,則m∥n D.若m∥n,m∥α,n∥

3、β,則α∥β 答案 C  2.(2019屆河南豫北六校11月聯(lián)考,5)如圖,在四棱錐P-ABCD中,M,N分別為AC,PC上的兩點,且MN∥平面PAD,則(  )                                        A.MN∥PD B.MN∥PA C.MN∥AD D.以上均有可能 答案 B  3.如圖所示,平面四邊形ABCD所在的平面與平面α平行,且四邊形ABCD在平面α內的平行投影A1B1C1D1是一個平行四邊形,則四邊形ABCD的形狀一定是      .? 答案 平行四邊形 4.(2019屆山西太原五中期中考試,14)在棱長為a的正

4、方體ABCD-A1B1C1D1中,M,N分別是棱A1B1,B1C1的中點,P是棱AD上的一點,AP=a3,過P,M,N的平面與棱CD交于點Q,則PQ=    .? 答案 223a 5.如圖,四邊形ABCD是平行四邊形,點P是平面ABCD外的一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH,求證:AP∥GH. 證明 如圖,連接AC,設AC交BD于O,連接MO. ∵四邊形ABCD是平行四邊形, ∴O是AC的中點. 又M是PC的中點, ∴MO∥PA. 又MO?平面BDM,PA?平面BDM, ∴PA∥平面BDM. 又經過PA與點G的平面交平面B

5、DM于GH, ∴AP∥GH. 6.(2019屆河北邯鄲10月調研,18)如圖,在四棱錐S-ABCD中,側棱SA⊥底面ABCD,底面ABCD是直角梯形,AD∥BC,AB⊥AD,且SA=AB=BC=2,AD=1,M是棱SB的中點. (1)求證:AM∥平面SCD; (2)求三棱錐B-MAC的體積. 解析 (1)證明:取SC的中點N,連接MN,ND. ∵M,N分別是SB,SC的中點,∴MN∥BC,且MN=12BC. ∵AD∥BC,且AD=12BC,∴MN∥AD且MN=AD. ∴四邊形AMND為平行四邊形,∴AM∥ND. 又AM?平面SCD,ND?平面SCD. ∴AM∥平面SCD

6、. (2)∵SA⊥底面ABCD,∴SA⊥BC,又BC⊥AB,SA∩AB=A, ∴BC⊥平面SAB, ∴VB-MAC=VC-MAB=13·S△MAB·BC=13×12×(2)2×2=23. 7.(2017河北衡水中學期中,18)如圖,已知在四棱錐P-ABCD中,底面ABCD是等腰梯形,AB∥CD,點O是線段AB的中點,PO⊥平面ABCD,PO=CD=DA=12AB=4,M是線段PA的中點. (1)證明:平面PBC∥平面ODM; (2)求點A到平面PCD的距離. 解析 (1)證明:由題意,得CD∥BO,且CD=BO, ∴四邊形OBCD為平行四邊形,∴BC∥OD. ∵BC?平面

7、PBC,OD?平面PBC, ∴OD∥平面PBC. 又∵AO=OB,AM=MP,∴OM∥PB. 又OM?平面PBC,PB?平面PBC, ∴OM∥平面PBC. 又OM∩OD=O, ∴平面PBC∥平面ODM. (2)取CD的中點N,連接ON,PN,如圖所示,則ON⊥CD. ∵PO⊥平面ABCD,CD?平面ABCD,∴PO⊥CD. 又∵ON⊥CD,PO∩ON=O,∴CD⊥平面PNO. ∵PN?平面PNO,∴CD⊥PN. ∴ON,PN分別為△ACD,△PCD的公共邊CD上的高. 由題意可求得ON=23,則PN=27, 設點A到平面PCD的距離為d. ∵V三棱錐A-PCD=

8、V三棱錐P-ACD, 即13×12×4×27×d=13×12×4×23×4, ∴d=4217.即點A到平面PCD的距離為4217. 煉技法 【方法集訓】 方法1 證明線面平行的方法 1.(2019屆湖北重點中學9月調研,19)如圖,在四棱錐S-ABCD中,底面ABCD是正方形,SA⊥底面ABCD,SA=AB=2,點M是SD的中點,AN⊥SC,且交SC于點N. (1)求證:SB∥平面ACM; (2)求點C到平面AMN的距離. 解析 (1)證明:連接BD交AC于E,連接ME. ∵四邊形ABCD是正方形,∴E是BD的中點. 又∵M是SD的中點,∴ME是△DSB的中位線.

9、∴ME∥SB. 又∵ME?平面ACM,SB?平面ACM,∴SB∥平面ACM. (2)由題意知DC⊥SA,DC⊥DA,又SA∩DA=A,∴DC⊥平面SAD,又AM?平面SAD,∴AM⊥DC. ∵SA=AD,M是SD的中點,∴AM⊥SD. 又DC∩SD=D, ∴AM⊥平面SDC,又SC?平面SDC,∴SC⊥AM. ∵SC⊥AN,AM∩AN=A,∴SC⊥平面AMN. 于是CN⊥平面AMN,則CN的長為點C到平面AMN的距離. 在Rt△SAC中,SA=2,AC=22,∴SC=SA2+AC2=23, 由AC2=CN·SC?CN=433, ∴點C到平面AMN的距離為433. 2.(2

10、018江西南昌二中月考,19)在直三棱柱ABC-A'B'C'中,∠BAC=90°,AB=AC=2,AA'=1,點M,N分別為A'B和B'C'的中點. (1)證明:MN∥平面A'ACC'; (2)求三棱錐A'-MNC的體積. 解析 (1)證法一:連接AB',AC', 因為三棱柱ABC-A'B'C'為直三棱柱, 所以M為AB'的中點.又因為N為B'C'的中點, 所以MN∥AC', 又MN?平面A'ACC',AC'?平面A'ACC', 所以MN∥平面A'ACC'. 證法二:取A'B'的中點P,連接MP,NP. 因為M,N分別為A'B和B'C'的中點, 所以MP∥BB',NP

11、∥A'C',易知AA'∥BB',所以MP∥AA'. 因為MP?平面A'ACC',AA'?平面A'ACC', 所以MP∥平面A'ACC',同理,NP∥平面A'ACC'. 又MP∩NP=P,因此平面MPN∥平面A'ACC'. 而MN?平面MPN,因此MN∥平面A'ACC'. (2)解法一:連接BN,由題意知A'N⊥B'C',因為平面A'B'C'∩平面B'BCC'=B'C',平面A'B'C'⊥平面B'BCC', 所以A'N⊥平面NBC.又A'N=12B'C'=1, 故VA'-MNC=VN-A'MC=12VN-A'BC=12VA'-NBC=16. 解法二:連接BN.VA'-MNC=VA

12、'-NBC-VM-NBC=12VA'-NBC=16. 方法2 證明面面平行的方法 1.(2018吉林長春質量監(jiān)測,19)如圖,在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.設M,N分別為PD,AD的中點. (1)求證:平面CMN∥平面PAB; (2)求三棱錐P-ABM的體積. 解析 (1)證明:∵M,N分別為PD,AD的中點, ∴MN∥PA,又MN?平面PAB,PA?平面PAB, ∴MN∥平面PAB. 在Rt△ACD中,∠CAD=60°,易知CN=AN,∴∠ACN=60°. 又∠BAC=60°,

13、∴CN∥AB. ∵CN?平面PAB,AB?平面PAB,∴CN∥平面PAB. 又CN∩MN=N,∴平面CMN∥平面PAB. (2)由(1)知,平面CMN∥平面PAB, ∴點M到平面PAB的距離等于點C到平面PAB的距離, ∵∠ABC=90°,∴CB⊥AB. ∵PA⊥平面ABCD, ∴PA⊥BC, ∴BC⊥平面PAB. ∵AB=1,∠ABC=90°,∠BAC=60°,∴BC=3, ∴三棱錐P-ABM的體積V=VM-PAB=VC-PAB=13×12×1×2×3=33. 2.(2018安徽合肥一中模擬,18)如圖,四邊形ABCD與ADEF均為平行四邊形,M,N,G分別是AB,AD

14、,EF的中點. (1)求證:BE∥平面DMF; (2)求證:平面BDE∥平面MNG. 證明 (1)連接AE,則AE必過DF與GN的交點O,連接MO,因為四邊形ADEF為平行四邊形,所以O為AE中點,又M為AB中點,所以MO為△ABE的中位線,所以BE∥MO, 又BE?平面DMF,MO?平面DMF, 所以BE∥平面DMF. (2)因為N,G分別為平行四邊形ADEF的對邊AD,EF的中點,所以DE∥GN, 又DE?平面MNG,GN?平面MNG, 所以DE∥平面MNG. 又M為AB的中點,N為AD的中點, 所以MN為△ABD的中位線, 所以BD∥MN, 因為BD?平面

15、MNG,MN?平面MNG, 所以BD∥平面MNG, 因為DE與BD為平面BDE內的兩條相交直線, 所以平面BDE∥平面MNG. 過專題 【五年高考】 A組 統(tǒng)一命題·課標卷題組 考點 直線、平面平行的判定與性質 1.(2017課標全國Ⅰ,6,5分)如圖,在下列四個正方體中,A,B為正方體的兩個頂點,M,N,Q為所在棱的中點,則在這四個正方體中,直線AB與平面MNQ不平行的是(  ) 答案 A  2.(2016課標全國Ⅲ,19,12分)如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點,AM=2MD,N

16、為PC的中點. (1)證明MN∥平面PAB; (2)求四面體NBCM的體積. 解析 (1)證明:由已知得AM=23AD=2, 取BP的中點T,連接AT,TN,由N為PC的中點知TN∥BC,TN=12BC=2.(3分) 又AD∥BC,故TN􀱀AM,故四邊形AMNT為平行四邊形,于是MN∥AT. 因為AT?平面PAB,MN?平面PAB,所以MN∥平面PAB.(6分) (2)因為PA⊥平面ABCD,N為PC的中點,所以N到平面ABCD的距離為12PA.(9分) 取BC的中點E,連接AE. 由AB=AC=3得AE⊥BC,AE=AB2-BE2=5. 由AM∥

17、BC得M到BC的距離為5, 故S△BCM=12×4×5=25. 所以四面體NBCM的體積VNBCM=13·S△BCM·PA2=453.(12分) 3.(2014課標Ⅱ,18,12分)如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點. (1)證明:PB∥平面AEC; (2)設AP=1,AD=3,三棱錐P-ABD的體積V=34,求A到平面PBC的距離. 解析 (1)證明:設BD與AC的交點為O,連接EO. 因為ABCD為矩形, 所以O為BD的中點. 又E為PD的中點, 所以EO∥PB. EO?平面AEC,PB?平面AEC, 所以

18、PB∥平面AEC. (2)V=16PA·AB·AD=36AB. 又V=34, 所以AB=32, 所以PB=AB2+PA2=132. 作AH⊥PB交PB于H. 由題設知BC⊥平面PAB, 因為AH?平面PAB, 所以BC⊥AH, 又BC∩BP=B, 故AH⊥平面PBC. 又AH=PA·ABPB=31313, 所以A到平面PBC的距離為31313. B組 自主命題·省(區(qū)、市)卷題組 考點 直線、平面平行的判定與性質 1.(2017浙江,19,15分)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=

19、2DC=2CB,E為PD的中點. (1)證明:CE∥平面PAB; (2)求直線CE與平面PBC所成角的正弦值. 解析 (1)證明:如圖,設PA中點為F,連接EF,FB.因為E,F分別為PD,PA中點,所以EF∥AD且EF=12AD. 又因為BC∥AD,BC=12AD,所以EF∥BC且EF=BC, 即四邊形BCEF為平行四邊形,所以CE∥BF, 因為CE?平面PAB,BF?平面PAB, 因此CE∥平面PAB. (2)分別取BC,AD的中點M,N. 連接PN交EF于點Q,連接MQ. 因為E,F,N分別是PD,PA,AD的中點,所以Q為EF的中點, 在平行四邊形BCEF

20、中,MQ∥CE. 由△PAD為等腰直角三角形得PN⊥AD. 由DC⊥AD,N是AD的中點得BN⊥AD. 因為PN∩BN=N, 所以AD⊥平面PBN, 由BC∥AD得BC⊥平面PBN, 因為BC?平面PBC, 所以平面PBC⊥平面PBN. 過點Q作PB的垂線,垂足為H,連接MH. MH是MQ在平面PBC上的射影,所以∠QMH是直線CE與平面PBC所成的角.設CD=1. 在△PCD中,由PC=2,CD=1,PD=2得CE=2, 在△PBN中,由PN=BN=1,PB=3得QH=14, 在Rt△MQH中,QH=14,MQ=2, 所以sin∠QMH=28. 所以,直線CE與平

21、面PBC所成角的正弦值是28. 2.(2016四川,17,12分)如圖,在四棱錐P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=12AD. (1)在平面PAD內找一點M,使得直線CM∥平面PAB,并說明理由; (2)證明:平面PAB⊥平面PBD. 解析 (1)取棱AD的中點M(M∈平面PAD),點M即為所求的一個點.理由如下: 連接CM.因為AD∥BC,BC=12AD, 所以BC∥AM,且BC=AM. 所以四邊形AMCB是平行四邊形,從而CM∥AB. 又AB?平面PAB,CM?平面PAB, 所以CM∥平面PAB. (說明:取棱PD的中

22、點N,則所找的點可以是直線MN上任意一點) (2)證明:連接BM,由已知,PA⊥AB,PA⊥CD, 因為AD∥BC,BC=12AD,所以直線AB與CD相交, 所以PA⊥平面ABCD. 因為BD?平面ABCD,所以PA⊥BD. 因為AD∥BC,BC=12AD, 所以BC∥MD,且BC=MD. 所以四邊形BCDM是平行四邊形. 又BC=CD,所以四邊形BCDM為菱形, 所以MC⊥BD, 由(1)知MC∥AB, 所以BD⊥AB. 又AB∩AP=A,所以BD⊥平面PAB. 又BD?平面PBD, 所以平面PAB⊥平面PBD. 3.(2015山東,18,12分)如圖,

23、三棱臺DEF-ABC中,AB=2DE,G,H分別為AC,BC的中點. (1)求證:BD∥平面FGH; (2)若CF⊥BC,AB⊥BC,求證:平面BCD⊥平面EGH. 證明 (1)證法一:連接DG,CD,設CD∩GF=M,連接MH. 在三棱臺DEF-ABC中, AB=2DE,G為AC的中點, 可得DF∥GC,DF=GC, 所以四邊形DFCG為平行四邊形. 則M為CD的中點,又H為BC的中點, 所以HM∥BD, 又HM?平面FGH,BD?平面FGH, 所以BD∥平面FGH. 證法二:在三棱臺DEF-ABC中, 由BC=2EF,H為BC的中點, 可得BH∥EF,B

24、H=EF, 所以四邊形HBEF為平行四邊形, 可得BE∥HF. 在△ABC中,G為AC的中點,H為BC的中點, 所以GH∥AB. 又GH∩HF=H,AB∩BE=B, 所以平面FGH∥平面ABED. 因為BD?平面ABED, 所以BD∥平面FGH. (2)連接HE. 因為G,H分別為AC,BC的中點, 所以GH∥AB. 由AB⊥BC,得GH⊥BC. 又H為BC的中點, 所以EF∥HC,EF=HC, 因此四邊形EFCH是平行四邊形. 所以CF∥HE, 又CF⊥BC,所以HE⊥BC. 又HE,GH?平面EGH,HE∩GH=H, 所以BC⊥平面EGH. 又B

25、C?平面BCD, 所以平面BCD⊥平面EGH. 4.(2014安徽,19,13分)如圖,四棱錐P-ABCD的底面是邊長為8的正方形,四條側棱長均為217,點G,E,F,H分別是棱PB,AB,CD,PC上共面的四點,平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)證明:GH∥EF; (2)若EB=2,求四邊形GEFH的面積. 解析 (1)因為BC∥平面GEFH,BC?平面PBC,且平面PBC∩平面GEFH=GH,所以GH∥BC. 同理可證EF∥BC, 因此GH∥EF. (2)連接AC,BD交于點O,BD交EF于點K,連接OP,GK. 因為PA=PC,O是AC的中

26、點,所以PO⊥AC,同理可得PO⊥BD. 又BD∩AC=O,且AC,BD都在底面內,所以PO⊥底面ABCD.又因為平面GEFH⊥平面ABCD,且PO?平面GEFH, 所以PO∥平面GEFH. 因為平面PBD∩平面GEFH=GK, 所以PO∥GK,所以GK⊥底面ABCD, 從而GK⊥EF. 所以GK是梯形GEFH的高. 由AB=8,EB=2得EB∶AB=KB∶DB=1∶4, 從而KB=14DB=12OB,即K為OB的中點. 再由PO∥GK得GK=12PO,即G是PB的中點,所以GH=12BC=4. 由已知可得OB=42,PO=PB2-OB2=68-32=6, 所以GK=

27、3. 故四邊形GEFH的面積S=GH+EF2·GK=4+82×3=18. C組 教師專用題組 考點 直線、平面平行的判定與性質 1.(2014遼寧,4,5分)已知m,n表示兩條不同直線,α表示平面.下列說法正確的是(  )                                        A.若m∥α,n∥α,則m∥n B.若m⊥α,n?α,則m⊥n C.若m⊥α,m⊥n,則n∥α D.若m∥α,m⊥n,則n⊥α 答案 B  2.(2016山東,18,12分)在如圖所示的幾何體中,D是AC的中點,EF∥DB. (1)已知AB=BC,AE=EC,求證:A

28、C⊥FB; (2)已知G,H分別是EC和FB的中點.求證:GH∥平面ABC. 證明 (1)因為EF∥DB, 所以EF與DB確定平面BDEF. 連接DE. 因為AE=EC,D為AC的中點, 所以DE⊥AC. 同理可得BD⊥AC. 又BD∩DE=D, 所以AC⊥平面BDEF, 因為FB?平面BDEF, 所以AC⊥FB. (2)設FC的中點為I.連接GI,HI. 在△CEF中,因為G是CE的中點, 所以GI∥EF.又EF∥DB, 所以GI∥DB. 在△CFB中,因為H是FB的中點, 所以HI∥BC. 又HI∩GI=I, 所以平面GHI∥平面ABC. 因

29、為GH?平面GHI,所以GH∥平面ABC. 3.(2015北京,18,14分)如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC=2,O,M分別為AB,VA的中點. (1)求證:VB∥平面MOC; (2)求證:平面MOC⊥平面VAB; (3)求三棱錐V-ABC的體積. 解析 (1)證明:因為O,M分別為AB,VA的中點, 所以OM∥VB. 又因為VB?平面MOC, 所以VB∥平面MOC. (2)證明:因為AC=BC,O為AB的中點,所以OC⊥AB. 又因為平面VAB⊥平面ABC,且OC?平面ABC, 所以OC⊥平面VA

30、B. 所以平面MOC⊥平面VAB. (3)在等腰直角三角形ACB中,AC=BC=2, 所以AB=2,OC=1. 所以等邊三角形VAB的面積S△VAB=3. 又因為OC⊥平面VAB, 所以三棱錐C-VAB的體積等于13OC·S△VAB=33. 又因為三棱錐V-ABC的體積與三棱錐C-VAB的體積相等, 所以三棱錐V-ABC的體積為33. 4.(2015天津,17,13分)如圖,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=25,AA1=7,BB1=27,點E和F分別為BC和A1C的中點. (1)求證:EF∥平面A1B1BA; (2)求證:平面AEA1⊥平

31、面BCB1. 證明 (1)如圖,連接A1B.在△A1BC中,因為E和F分別是BC和A1C的中點,所以EF∥BA1.又因為EF?平面A1B1BA,所以EF∥平面A1B1BA. (2)因為AB=AC,E為BC的中點,所以AE⊥BC.因為AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,從而BB1⊥AE.又因為BC∩BB1=B,所以AE⊥平面BCB1,又因為AE?平面AEA1,所以平面AEA1⊥平面BCB1. 5.(2015廣東,18,14分)如圖,三角形PDC所在的平面與長方形ABCD所在的平面垂直,PD=PC=4,AB=6,BC=3. (1)證明:BC∥平面PDA;

32、(2)證明:BC⊥PD; (3)求點C到平面PDA的距離. 解析 (1)證明:因為四邊形ABCD是長方形, 所以AD∥BC. 又因為AD?平面PDA,BC?平面PDA,所以BC∥平面PDA. (2)證明:取CD的中點,記為E,連接PE,因為PD=PC,所以PE⊥DC. 又因為平面PDC⊥平面ABCD,平面PDC∩平面ABCD=DC,PE?平面PDC,所以PE⊥平面ABCD. 又BC?平面ABCD,所以PE⊥BC. 因為四邊形ABCD為長方形,所以BC⊥DC. 又因為PE∩DC=E,所以BC⊥平面PDC. 而PD?平面PDC,所以BC⊥PD. (3)連接AC.由(2)知

33、,BC⊥PD,又因為AD∥BC,所以AD⊥PD,所以S△PDA=12AD·PD=12×3×4=6. 在Rt△PDE中,PE=PD2-DE2=42-32=7. S△ADC=12AD·DC=12×3×6=9. 由(2)知,PE⊥平面ABCD,則PE為三棱錐P-ADC的高. 設點C到平面PDA的距離為d, 由VC-PDA=VP-ADC,即13d·S△PDA=13PE·S△ADC,亦即13×6d=13×7×9,得d=372. 故點C到平面PDA的距離為372. 6.(2014北京,17,14分)如圖,在三棱柱ABC-A1B1C1中,側棱垂直于底面,AB⊥BC,AA1=AC=2,BC=

34、1,E,F分別是A1C1,BC的中點. (1)求證:平面ABE⊥平面B1BCC1; (2)求證:C1F∥平面ABE; (3)求三棱錐E-ABC的體積. 解析 (1)證明:在三棱柱ABC-A1B1C1中,BB1⊥底面ABC, 所以BB1⊥AB. 又因為AB⊥BC, 所以AB⊥平面B1BCC1. 所以平面ABE⊥平面B1BCC1. (2)證明:取AB的中點G,連接EG,FG. 因為E,F分別是A1C1,BC的中點, 所以FG∥AC,且FG=12AC. 因為AC∥A1C1,且AC=A1C1, 所以FG∥EC1,且FG=EC1. 所以四邊形FGEC1為平行四邊形.

35、 所以C1F∥EG. 又因為EG?平面ABE,C1F?平面ABE, 所以C1F∥平面ABE. (3)因為AA1=AC=2,BC=1,AB⊥BC, 所以AB=AC2-BC2=3. 所以三棱錐E-ABC的體積 V=13S△ABC·AA1=13×12×3×1×2=33. 7.(2014山東,18,12分)如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=12AD,E,F分別為線段AD,PC的中點. (1)求證:AP∥平面BEF; (2)求證:BE⊥平面PAC. 證明 (1)設AC∩BE=O,連接OF,EC. 由于E為AD的中點, AB=BC=1

36、2AD,AD∥BC, 所以AE∥BC,AE=AB=BC, 因此四邊形ABCE為菱形, 所以O為AC的中點. 又F為PC的中點, 因此在△PAC中, 可得AP∥OF. 又OF?平面BEF,AP?平面BEF, 所以AP∥平面BEF. (2)由題意知ED∥BC,ED=BC, 所以四邊形BCDE為平行四邊形, 因此BE∥CD. 又AP⊥平面PCD,CD?平面PCD, 所以AP⊥CD,因此AP⊥BE. 因為四邊形ABCE為菱形, 所以BE⊥AC. 又AP∩AC=A,AP,AC?平面PAC, 所以BE⊥平面PAC. 8.(2014四川,18,12分)在如圖所示的多面體中

37、,四邊形ABB1A1和ACC1A1都為矩形. (1)若AC⊥BC,證明:直線BC⊥平面ACC1A1; (2)設D,E分別是線段BC,CC1的中點,在線段AB上是否存在一點M,使直線DE∥平面A1MC?請證明你的結論. 解析 (1)證明:因為四邊形ABB1A1和ACC1A1都是矩形, 所以AA1⊥AB,AA1⊥AC. 因為AB,AC為平面ABC內兩條相交直線, 所以AA1⊥平面ABC. 因為直線BC?平面ABC,所以AA1⊥BC. 又AC⊥BC,AA1,AC為平面ACC1A1內兩條相交直線, 所以BC⊥平面ACC1A1. (2)存在.證明如下:取線段AB的中點M,連接A1

38、M,MC,A1C,AC1,設O為A1C,AC1的交點. 由已知可知O為AC1的中點. 連接MD,OE,則MD,OE分別為△ABC,△ACC1的中位線, 所以MD∥AC且MD=12AC,OE∥AC且OE=12AC,因此MD􀱀OE. 連接OM,從而四邊形MDEO為平行四邊形,則DE∥MO. 因為直線DE?平面A1MC,MO?平面A1MC, 所以直線DE∥平面A1MC,即線段AB上存在一點M(線段AB的中點),使直線DE∥平面A1MC. 【三年模擬】 時間:50分鐘 分值:65分 一、選擇題(每小題5分,共20分) 1.(2019屆吉林10月調研,3)已

39、知直線a,b,l,平面α,β,則下列命題中正確的個數(shù)為(  )                                       ①若α⊥β,l⊥α,則l∥β ②若a⊥l,b⊥l,則a∥b ③若α⊥β,l?α,則l⊥β ④若l⊥α,l⊥β,則α∥β A.0 B.1 C.2 D.3 答案 B  2.(2018山東聊城模擬,4)下列四個正方體中,A,B,C為所在棱的中點,則能得出平面ABC∥平面DEF的是(  ) 答案 B  3.(2019屆湖南五市十校10月聯(lián)考,8)若平面β截三棱錐所得的截面為平行四邊形,則該三棱錐的所有棱中與平面β平行的棱有(  ) A.0

40、條 B.1條 C.2條 D.1條或2條 答案 C  4.(2018湖南長沙長郡中學調研考試,11)如圖,在四棱錐P-ABCD中,AB⊥AD,BC∥AD,PA=AD=4,AB=BC=2,PA⊥平面ABCD,點E是線段AB的中點,點F在線段PA上,且EF∥平面PCD,直線PD與平面CEF交于點H,則線段CH的長度為(  ) A.2 B.2 C.22 D.23 答案 C  二、填空題(共5分) 5.(2017安徽師大附中期中,15)正方體ABCD-A1B1C1D1中,E是棱CC1的中點,F是側面BCC1B1內的動點,且A1F∥平面D1AE,若正方體ABCD-A1B1C1D1的棱長

41、是2,則F的軌跡被正方形BCC1B1截得的線段長是    .? 答案 2 三、解答題(共40分) 6.(2019屆河南豫南九校11月聯(lián)考,18)如圖所示,在四棱錐P-ABCD中,側面PAD⊥底面ABCD,∠PAD=∠ABC=90°,設PE=2EB. (1)求證:AE⊥BC; (2)若直線AB∥平面PCD,且DC=2AB,求證:直線PD∥平面ACE. 證明 (1)∵側面PAD⊥底面ABCD,且∠PAD=90°,∴PA⊥底面ABCD. 又BC?底面ABCD,∴PA⊥BC. 又∵∠ABC=90°,PA∩AB=A,∴BC⊥平面PAB. 又∵AE?平面PAB,∴AE⊥B

42、C. (2)∵AB∥平面PCD,AB?平面ABCD,且平面ABCD∩平面PCD=DC,∴AB∥DC. 如圖,連接BD交AC于點M,連接EM. ∵AB∥DC,∴∠ABD=∠BDC.又∵∠AMB=∠DMC, ∴△AMB∽△CMD,∴ABCD=MBDM.又DC=2AB,∴DM=2MB. 又∵PE=2EB,∴PD∥EM. 又∵PD?平面EAC,EM?平面EAC,∴PD∥平面ACE. 7.(2019屆廣東佛山9月調研,18)如圖,在三棱錐F-ACE與三棱錐F-ABC中,△ACE和△ABC都是邊長為2的等邊三角形,H,D分別為FB,AC的中點,EF∥BD,EF=12BD. (1)試在平

43、面EFC內作一條直線l,使得P∈l時,均有PH∥平面ABC(作出直線l并證明); (2)求兩棱錐體積之和的最大值. 解析 (1)如圖,設FC的中點為I,EC的中點為G,連接GI,則直線GI即為所作直線l. 證明:連接GH,HI,因為H,I分別為FB,FC的中點,所以HI∥BC, 又HI?平面ABC,BC?平面ABC,所以HI∥平面ABC. 因為G,I分別為EC,FC的中點,所以GI∥EF. 因為EF∥BD,所以GI∥BD. 又GI∩HI=I,GI、HI?平面GHI,所以平面GHI∥平面ABC. 由P∈GI知PH?平面GHI,所以PH∥平面ABC. (2)因為EF∥BD

44、,所以EF與BD確定一個平面. 連接DE,因為AE=CE,D為AC的中點, 所以DE⊥AC,同理DB⊥AC. 又DB∩DE=D,所以AC⊥平面BDEF. 所以VF-ACE+VF-ABC=VA-BDEF+VC-BDEF =13S四邊形BDEF×AC=13×(EF+BD)h2×AC, 其中,2EF=BD=3,h為梯形BDEF的高,h≤ED, 當平面ACE⊥平面ABC時,hmax=ED=3, 所以(VF-ACE+VF-ABC)max=13×32+3×32×2=32. 8.(2019屆廣東珠海一中期中考試,20)如圖所示,在四棱錐P-ABCD中,底面四邊形ABCD是菱形,AC∩BD=

45、O,△PAC是邊長為2的等邊三角形,PB=PD=6,AP=4AF. (1)求四棱錐P-ABCD的體積; (2)在線段PB上是否存在一點M,使得CM∥平面BDF?如果存在,求出BMBP的值;如果不存在,請說明理由. 解析 (1)∵底面ABCD是菱形,AC∩BD=O, ∴O為AC,BD的中點. 又∵PA=PC,PB=PD, ∴PO⊥AC,PO⊥BD. ∵AC∩BD=O,AC?平面ABCD,BD?平面ABCD, ∴PO⊥底面ABCD. 在等邊△PAC中,AC=2,∴PO=3. 在△PBD中,PB=PD=6,則BO=(6)2-(3)2=3, ∴BD=23. ∴VP-ABCD

46、=13·S菱形ABCD·PO=13×12×2×23×3=2. (2)存在.如圖,過C作CE∥BD交AB的延長線于E,過E作EH∥BF交PA于H,交PB于M. ∵CE∥BD,BD?平面BDF,CE?平面BDF, ∴CE∥平面BDF. ∵EH∥BF,BF?平面BDF,EH?平面BDF, ∴EH∥平面BDF. 又∵CE∩EH=E,CE?平面CEM,EH?平面CEM, ∴平面BDF∥平面CEM.又CM?平面CEM, ∴CM∥平面BDF. ∵BD∥CE,DC∥BE, ∴四邊形BECD為平行四邊形. ∴DC=BE=AB,∴B為AE的中點. ∵AF=14AP,EH∥BF, ∴H

47、為PA的中點. ∴在△PAE中,M為中線PB與中線EH的交點. ∴M為△PAE的重心,∴BMBP=13. 9.(2018河南六市三模,18)已知空間幾何體ABCDE中,△BCD與△CDE均是邊長為2的等邊三角形,△ABC是腰長為3的等腰三角形,平面CDE⊥平面BCD,平面ABC⊥平面BCD. (1)試在平面BCD內作一條直線,使得直線上任意一點F與E的連線EF均與平面ABC平行,并給出證明; (2)求三棱錐E-ABC的體積. 解析 (1)如圖所示,取DC的中點N,取BD的中點M,連接MN,則MN即為所求. 證明:連接EM,EN,取BC的中點H,連接AH, ∵△ABC是腰長為

48、3的等腰三角形,BC=2,H為BC的中點, ∴AH⊥BC,又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,AH?平面ABC, ∴AH⊥平面BCD,同理可證EN⊥平面BCD, ∴EN∥AH, ∵EN?平面ABC,AH?平面ABC, ∴EN∥平面ABC. 又M,N分別為BD,DC的中點, ∴MN∥BC, ∵MN?平面ABC,BC?平面ABC, ∴MN∥平面ABC. 又MN∩EN=N,MN?平面EMN,EN?平面EMN, ∴平面EMN∥平面ABC, 又EF?平面EMN, ∴EF∥平面ABC, 即直線MN上任意一點F與E的連線EF均與平面ABC平行. (2)連接DH,取CH的中點G,連接NG,則NG∥DH, 由(1)可知EN∥平面ABC, ∴點E到平面ABC的距離與點N到平面ABC的距離相等, 又△BCD是邊長為2的等邊三角形, ∴DH⊥BC, 又平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,DH?平面BCD, ∴DH⊥平面ABC, ∴NG⊥平面ABC, 易知DH=3,∴NG=32, 又S△ABC=12·BC·AH=12×2×32-12=22, ∴VE-ABC=13·S△ABC·NG=63.

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!