2019-2020年高二數(shù)學(xué)上 10.1《算法的概念》教案(滬教版).doc
《2019-2020年高二數(shù)學(xué)上 10.1《算法的概念》教案(滬教版).doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高二數(shù)學(xué)上 10.1《算法的概念》教案(滬教版).doc(3頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高二數(shù)學(xué)上 10.1《算法的概念》教案(滬教版) 教學(xué)目標:1.通過實例體會算法思想,了解算法的含義與主要特點; 2.能按步驟用自然語言寫出簡單問題的算法過程學(xué); 3.培養(yǎng)學(xué)生邏輯思維能力與表達能力. 教學(xué)重點:將問題的解決過程用自然語言表示為算法過程. 教學(xué)難點:用自然語言描述算法. 教學(xué)過程 一.序言 算法不僅是數(shù)學(xué)及其應(yīng)用的重要組成部分,也是計算機理論和技術(shù)的核心.在現(xiàn)代社會里,計算機已經(jīng)成為人們?nèi)粘I詈凸ぷ鞑豢扇鄙俚墓ぞ撸犚魳贰⒖措娪?、玩游戲、打字、畫卡通畫、處理?shù)據(jù),計算機幾乎滲透到了人們生活的所有領(lǐng)域.那么,計算機是怎樣工作的呢?要想弄清楚這個問題,算法的學(xué)習(xí)是一個開始.同時,算法有利于發(fā)展有條理的思考與表達的能力,提高邏輯思維能力. 在以前的學(xué)習(xí)中,雖然沒有出現(xiàn)算法這個名詞,但實際上在數(shù)學(xué)教學(xué)中已經(jīng)滲透了大量的算法思想,如四則運算的過程、求解方程的步驟等等,完成這些工作都需要一系列程序化的步驟,這就是算法的思想. 閱讀教材第4頁. 二.問題情境 1.情境:介紹猜數(shù)游戲(見教材第5頁). 2.問題:解決這一問題有哪些策略,哪一種較好? 三.學(xué)生活動 學(xué)生容易說出“二分法策略”,教師要引導(dǎo)學(xué)生進行算法化(按步驟)的表達. 說明:以上過程實際上是按一種機械的程序進行的一系列操作. 四.建構(gòu)數(shù)學(xué) 在解決某些問題時,需要設(shè)計出一系列可操作或可計算的步驟,通過實施這些步驟來解決問題,通常把這些步驟稱為解決這些問題的算法. 1.廣義的算法——某一工作的方法和步驟,例如:歌譜是一首歌曲的算法,空調(diào)說明書是空調(diào)使用的算法. 在數(shù)學(xué)中,現(xiàn)代意義上的“算法”通常是指可以用計算機來解決的某一類問題的程序. 2.本章主要討論的算法(計算機能夠?qū)崿F(xiàn)的算法)——對一類問題的機械的、統(tǒng)一的求解方法.例如:解方程(組)的算法,函數(shù)求值的算法,作圖問題的算法等. 3.本節(jié)采用自然語言來描述算法. 五.數(shù)學(xué)運用 1.算法描述舉例 例1.給出求1+2+3+4+5的一個算法. 解: 算法1 按照逐一相加的程序進行. 第一步:計算1+2,得到3; 第二步:將第一步中的運算結(jié)果3與3相加,得到6; 第三步:將第二步中的運算結(jié)果6與4相加,得到10; 第四步:將第三步中的運算結(jié)果10與5相加,得到15. 算法2 運用公式直接計算. 第一步:取=5; 第二步:計算; 第三步:輸出運算結(jié)果. 算法3 用循環(huán)方法求和. 第一步:使,; 第二步:使; 第三步:使; 第四步:使; 第五步:如果,則返回第三步,否則輸出. 說明:①一個問題的算法可能不唯一. ②若將本例改為“給出求的一個算法”,則上述算法2和算法3表達較為方便. 例2.給出求解方程組的一個算法. 分析:解線性方程組的常用方法是加減消元法和代入消元法,這兩種方法沒有本質(zhì)的差別,為了適用于解一般的線性方程組,以便于在計算機上實現(xiàn),我們用高斯消元法(即先將方程組化為一個三角形方程組,在通過回代過程求出方程組的解)解線性方程組. 解:用消元法解這個方程組,步驟是: 第一步:方程①不動,將方程②中的系數(shù)除以方程①中的系數(shù),得到乘數(shù); 第二步:方程②減去乘以方程①,消去方程②中的項,得到 ; 第三步:將上面的方程組自下而上回代求解,得到,. 所以原方程組的解為. 說明:(1).從例1、例2可以看出,算法具有兩個主要特點: ①有限性:一個算法在執(zhí)行有限個步驟后必須結(jié)束. “有限性”往往指在合理的范圍之內(nèi),如果讓計算機執(zhí)行一個歷時1000年才結(jié)束的算法,這雖然是有限的,但超過了合理的限度,人們也不把它視作有效算法.“合理限度”一般由人們的常識和需要以及計算機的性能而定. ②確定性:算法的每一個步驟和次序應(yīng)當是確定的. 例如,一個健身操中一個動作“手舉過頭頂”,這個步驟就是不確定的、含糊的.是雙手都舉過頭,還是左手或右手?舉過頭頂多少厘米不同的人可以有不同的理解.算法中的每一個步驟不應(yīng)產(chǎn)生歧義,而應(yīng)當是明確無誤的. (2).一般來說,算法應(yīng)有一個或多個輸出,算法的目的是為了求解,沒有輸出的算法是沒有意義的. 2.練習(xí):課本第6頁練習(xí)第1、2、3題. 練習(xí)1答案:第一步 移項得; 第二步 兩邊同除以2得. 練習(xí)2答案:第一步:使,; 第二步:使; 第三步:使; 第四步:使; 第五步:如果,則返回第三步,否則輸出. 練習(xí)3答案:第一步 計算斜率; 第二步 用點斜式寫出直線方程. 補充: 1.一個人帶三只狼和三只羚羊過河,只有一條船,同船可以容納一個人和兩只動物.沒有人在的時候,如果狼的數(shù)量不少于羚羊的數(shù)量,狼就會吃掉羚羊.請設(shè)計過河的算法. 解:算法或步驟如下: S1 人帶兩只狼過河; S2 人自己返回; S3 人帶一只羚羊過河; S4 人帶兩只狼返回; S5 人帶兩只羚羊過河; S6 人自己返回; S7 人帶兩只狼過河; S8 人自己返回; S9 人帶一只狼過河. 2.寫出求的一個算法. 解:第一步:使,; 第二步:使; 第三步:使; 第四步:使; 第五步:使; 第六步:如果,則返回第三步,否則輸出. 六.回顧小結(jié) 1.算法的概念:對一類問題的機械的、統(tǒng)一的求解方法.算法是由基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟,或者是按照要求設(shè)計好的有限的計算序列,并且這樣的步驟或序列能解決一類問題. 2.算法的重要特征: (1)有限性:一個算法在執(zhí)行有限步后必須結(jié)束; (2)確切性:算法的每一個步驟和次序必須是確定的; (3)輸入:一個算法有0個或多個輸入,以刻劃運算對象的初始條件.所謂0個輸入是指算法本身定出了初始條件. (4)輸出:一個算法有1個或多個輸出,以反映對輸入數(shù)據(jù)加工后的結(jié)果.沒有輸出的 算法是毫無意義的. 七、課外作業(yè): 課本第X頁第X題, 補充: 1. 有A、B、C三個相同規(guī)格的玻璃瓶,A裝著酒精,B裝著醋,C為空瓶,請設(shè)計一個算法,把A、B瓶中的酒精與醋互換. 2.寫出解方程的一個算法. 3.已知,,寫出求直線AB斜率的一個算法. 4.“雞兔同籠”是我國隋朝時期的數(shù)學(xué)著作《孫子算經(jīng)》中的一個有趣而具有深遠影響的題目: “今有雉兔同籠,上有三十五頭,下有九十四足,問雉兔各幾何?” 請你先列出解決這個問題的方程組,并設(shè)計一個解該方程組的算法.- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 算法的概念 2019-2020年高二數(shù)學(xué)上 10.1算法的概念教案滬教版 2019 2020 年高 數(shù)學(xué) 10.1 算法 概念 教案 滬教版
鏈接地址:http://www.3dchina-expo.com/p-2436610.html