欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

高等數(shù)學(xué)(同濟(jì)第六版)課件第四、五章 4. 換元積分法

上傳人:飛****9 文檔編號:24505699 上傳時間:2021-07-01 格式:PPT 頁數(shù):26 大小:1.01MB
收藏 版權(quán)申訴 舉報 下載
高等數(shù)學(xué)(同濟(jì)第六版)課件第四、五章 4. 換元積分法_第1頁
第1頁 / 共26頁
高等數(shù)學(xué)(同濟(jì)第六版)課件第四、五章 4. 換元積分法_第2頁
第2頁 / 共26頁
高等數(shù)學(xué)(同濟(jì)第六版)課件第四、五章 4. 換元積分法_第3頁
第3頁 / 共26頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《高等數(shù)學(xué)(同濟(jì)第六版)課件第四、五章 4. 換元積分法》由會員分享,可在線閱讀,更多相關(guān)《高等數(shù)學(xué)(同濟(jì)第六版)課件第四、五章 4. 換元積分法(26頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。

1、1.若 稱 函 數(shù) F(x)為 f (x) 的 原 函 數(shù) ,)()( xfxF 稱 F(x)+C為 f (x) 的 不 定 積 分 。2. 設(shè) f(x)在 a,b上 連 續(xù) , F(x)是 f(x)的 原 函 數(shù) , 則ba dxxf )( )()( aFbF 3. 設(shè) f(x)在 a,b上 連 續(xù) , 則 )()( xfdttfxa .cossin )1( 20 3 xdxx求 積 分 .)ln1(ln )2( 43 ee xxx dx .)ln1(ln )2( 43 ee xxx dx 43 )ln1(ln )(lnee xx xd 43 )ln1(ln )(lnee xx xd 43

2、2)ln(1 ln2 ee xxd 43)lnarcsin(2 eex .6 定 理 設(shè) (1) 函 數(shù) f (x)在 a,b上 連 續(xù) ; (2)函 數(shù) x=(t)在 ,上 有 連 續(xù) 導(dǎo) 數(shù) ; (3)當(dāng) t 在 ,上 變 化 時 , x=(t)在 a,b上 變 化 , 且 ()=a, ()=b; 則 dtttfdxxfba )()()(應(yīng) 用 換 元 公 式 時 應(yīng) 注 意 :(1)換 積 分 限 .(2)求 出 不 定 積 分 后 代 入 新 變 量 的 上 、 下 限 . 證 設(shè) F(x)是 f (x) 的 一 個 原 函 數(shù) ,),()()( aFbFdxxfba )( tF )(

3、)( ttF ),()( ttf 則 是 的 一 個 原 函 數(shù) ,)( tF )()( ttf dtttf )()( )()( FF ),()( aFbF dxxfba )( .)()( dtttf 例 1 計(jì) 算 積 分 .12 2)1( 40 dxxx 解 令 12 xt tdtdx)1(21 2 txdxxx 40 12 2 tdttt 31 2 2)1(21dtt )3(21 231 313 33121 tt 322 基 本 類 型 6: 當(dāng) 被 積 函 數(shù) 含 有 時 ,n baxn baxt 可 做 代 換.)1()2( 10 1002 dxxx 解 令 xt 1 dtdx 0

4、x ,1t1x ,0tdxxx 10 1002 )1( dttt 01 1002)1(dtttt 10 1002)21( dtttt 10 102101100 )2(10103102101 )103110221011( ttt 103110221011 證 令 x= t, 則 dx= dt aa a dxxfdxxf 0 )(2)( aa dxxf 0)(例 2 設(shè) f (x)在 -a,a上 連 續(xù) , 若 f (x)為 偶 函 數(shù) , 則 若 f (x)為 奇 函 數(shù) , 則0 )(a dxxf 0 )(a dttf a dttf0 )( a dxxf0 )( ),()( xfxf aa d

5、xxf )( ;)(2 0 a dxxf),()( xfxf aa dxxf )( .0 若 f (x)為 偶 函 數(shù) , 若 f (x)為 奇 函 數(shù) , ,)()()( 00 aa aa dxxfdxxfdxxf ,)()(0 a dxxfxf a dxxfxf0 )()( a dxxfxf0 )()( a dxxf0 )( a dxxf0 )( 奇函數(shù)例 3 計(jì) 算 .11 cos211 22 dxx xxx 11 2211 2 dxxx 11 211 cos dxxxx偶函數(shù) 10 22114 dxxx 10 2 22 )1(1 )11(4 dxx xx 10 2)11(4 dxx 1

6、0 2144 dxx.4 單位圓的面積 例 4 設(shè) xx xxexf x 0 cos1 1 01 )( 2 dxxf )2(: 41 計(jì)算解 設(shè) t = x 2 則 x= 1時 , t = 1; x= 4時 ,t=2dxxf )2(41 dttf )(21 dttf )(01 dttf )(20dtet t201 dtt 20 cos1 1 01221 te dtt 20 2 2sec21)1(21 e 202tant )1(21 e 1tan 例 5 若 f (x)是 ( , ) 上 以 T 為 周 期 的 連 續(xù) 函 數(shù) ,證 明 TTaa dxxfdxxf 0 )()()1( TnTaa

7、 dxxfndxxf 0 )()()2(并 由 此 計(jì) 算 n dxx0 2sin1證 (1) 記 Taa dxxfa )()( )()( Taa dxxfa )()( 00 aTa dxxfdxxf0)()( afTaf ,)()( Cdxxfa Taa CdxxfT 0 )()0( TTaa dxxfdxxf 0 )()( nTaa dxxf )()2( Taa dxxf )( TTaTa dxxf)( )( TTna Tna dxxf)1( )1( )(T dxxf0 )( TT dxxfdxxf 00 )()( T dxxfn 0 )( n dxx0 2sin1 0 2sin1 dxx

8、n 0 2)cos(sin dxxxn 0 |cossin| dxxxn 0 |)4sin(2| dxxn (令 ) 4 xt 454 |sin|2 dttn 0 |sin|2 dttn 0 sin2 tdtn 0cos2 tn n22 44 |sin|2 dttn 證 ( 1) 設(shè) tx 2 ,dtdx 0 x ,2t 2x ,0 t 2020 )(cos)(sin )1( dxxfdxxf 00 )(sin2)(sin )2( dxxfdxxxf 0 2cos1 sin dxxxx例 6 若 f (x)在 0,1上 連 續(xù) , 證 明由 此 計(jì) 算 20 )(sin dxxf 02 )2s

9、in( dttf 20 )(cos dttf ;)(cos20 dxxf( 2) 設(shè) tx ,dtdx 0 x ,t x ,0t0 )(sin dxxxf 0 )sin()( dttft,)(sin)(0 dttft 0 )(sin dttf 0 )(sin dtttf 0 )(sin dxxf ,)(sin0 dxxxf .)(sin2)(sin 00 dxxfdxxxf 0 2cos1 sin dxxxx 0 2cos1 sin2 dxxx 0 2 )(coscos1 12 xdx 0)arctan(cos2 x.42)44(2 0 )(sin dxxxf 練 習(xí) (1) 計(jì) 算 0 2s

10、in1 dxx(2) 證 明 200 sin2sin xdxxdx nn (1) 0 2sin1 dxx 0 2)cos(sin dxxx 0 |cossin| dxxx 0 |)4sin(|2 dxx )4( xt 434 |sin|2 dtt 44 |sin|2 dtt 0 |sin|2 dtt 0 sin2 tdt 22 220 sinsin xdxxdx nntx 設(shè)2sin xdxn 20 sin tdtn 20 sin xdxn (2) 證 0 sin xdxn 02 )(sin dttn 200 sin2sin xdxxdx nn 定 理 是 單 調(diào) 的 、 可 導(dǎo) 的 函 數(shù)

11、, 且 )( tx 設(shè),0)( t 具 有 原 函 數(shù) , )()( ttf 則 dtttfdxxf )()()(求微分換元積分用 法 : dxxf )( )()( tdtf dtttf )()( )0( 22 adxxa例 7 求 積 分解 設(shè) x=asint , 則 dx=acostdt )22( tdxxa 22 tdtataa cos)sin( 22 dtta 22cos dtta )2cos1(22Ctata 2sin42 22 Cxaxaxa 222 21arcsin2 Cttata cossin22 22 例 8 求 積 分解 令 x=atant ).0(1 22 adxax t

12、dtadx 2sec dxax 221 tdtata 2secsec1 tdtsec Ctt tansecln t a x22 ax .ln 22 Ca axax 2,2t.)ln( 22 Caxx 例 8 求 積 分 ).0(1 22 adxax另 解 令 x=asht, 則 dx=achtdtdxax 221 achtdtatsha 222 1achtdtacht 1 Ctdtt Caxarsh .)ln( 22 Caxx 基 本 類 型 7: 當(dāng) 被 積 函 數(shù) 含 有 時 ,22 xa 可 做 代 換 x asint基 本 類 型 8: 當(dāng) 被 積 函 數(shù) 含 有 時 ,22 ax 可 做 代 換 x atant或 x asht基 本 類 型 9: 當(dāng) 被 積 函 數(shù) 含 有 時 ,22 ax 可 做 代 換 x asect或 x acht

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!