2019-2020年高三數(shù)學(xué)經(jīng)典備課資料 函數(shù)概念及性質(zhì)教案 新人教A版.doc
《2019-2020年高三數(shù)學(xué)經(jīng)典備課資料 函數(shù)概念及性質(zhì)教案 新人教A版.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)經(jīng)典備課資料 函數(shù)概念及性質(zhì)教案 新人教A版.doc(3頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)經(jīng)典備課資料 函數(shù)概念及性質(zhì)教案 新人教A版 1.函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),記作:y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域. 如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;函數(shù)的定義域、值域要寫成集合或區(qū)間的形式. 能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:分式的分母不等于零; 偶次方根的被開方數(shù)不小于零;對數(shù)式的真數(shù)必須大于零;如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,那么它的定義域是使各部分都有意義的x的值組成的集合;實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.求出不等式組的解集即為函數(shù)的定義域. 2.構(gòu)成函數(shù)的三要素:定義域、對應(yīng)關(guān)系和值域. 構(gòu)成函數(shù)的三個(gè)要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù));兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān).相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備). 函數(shù)的值域取決于定義域和對應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域;應(yīng)熟悉掌握一次函數(shù)、二次函數(shù),它是求解復(fù)雜函數(shù)值域的基礎(chǔ);求函數(shù)值域的常用方法有:直接法、換元法、配方法、判別式法、單調(diào)性法等. 3.函數(shù)圖象知識歸納 定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) (x∈A)中的x為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x)(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過來,以滿足y=f(x)的每一組有序?qū)崝?shù)對x、y為坐標(biāo)的點(diǎn)(x,y),均在C上,即記為C={ P(x,y) | y= f(x), x∈A}.圖象C一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行于y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成. 畫法:①描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出x,y的一些對應(yīng)值并列表,以(x,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)P(x, y),最后用平滑的曲線將這些點(diǎn)連結(jié)起來.②圖象變換法:常用變換方法有三種,即平移變換、伸縮變換和對稱變換. 作用:直觀地看出函數(shù)的性質(zhì);利用數(shù)形結(jié)合的方法分析解題的思路;提高解題的速度;發(fā)現(xiàn)解題中的錯(cuò)誤. 4.區(qū)間的概念 區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;無窮區(qū)間;區(qū)間的數(shù)軸表示. 5.映射 一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的一個(gè)映射,記作“f:A→B”.給定一個(gè)集合A到B的映射,如果a∈A,b∈B,且元素a和元素b對應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象. 說明:函數(shù)是一種特殊的映射,映射是一種特殊的對應(yīng),①集合A、B及對應(yīng)法則f是確定的;②對應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合A到集合B的對應(yīng),它與從B到A的對應(yīng)關(guān)系一般是不同的;③對于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象. 6.函數(shù)的表示法 函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);解析法:必須注明函數(shù)的定義域;圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.解析法便于算出函數(shù)值;列表法便于查出函數(shù)值;圖象法便于量出函數(shù)值. 分段函數(shù):在定義域的不同部分上有不同的解析表達(dá)式的函數(shù),在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式.分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而應(yīng)寫成函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號括起來,并分別注明各部分的自變量的取值情況.分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集. 復(fù)合函數(shù):如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f\[g(x)\]=F(x)(x∈A)稱為f、g的復(fù)合函數(shù). 7.函數(shù)的單調(diào)性 增函數(shù):設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果對于定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)經(jīng)典備課資料 函數(shù)概念及性質(zhì)教案 新人教A版 2019 2020 年高 數(shù)學(xué) 經(jīng)典 備課 資料 函數(shù) 概念 性質(zhì) 教案 新人
鏈接地址:http://www.3dchina-expo.com/p-2586317.html