2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí) 第4課時-一元二次不等式的解法教案.doc
《2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí) 第4課時-一元二次不等式的解法教案.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí) 第4課時-一元二次不等式的解法教案.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí) 第4課時-一元二次不等式的解法教案 二.教學(xué)目標(biāo):掌握一元二次不等式的解法,能應(yīng)用一元二次不等式、對應(yīng)方程、函數(shù)三者之間的關(guān)系解決綜合問題,會解簡單的分式不等式及高次不等式. 三.教學(xué)重點(diǎn):利用二次函數(shù)圖象研究對應(yīng)不等式解集的方法. 四.教學(xué)過程: (一)主要知識: 1.一元二次不等式、對應(yīng)方程、函數(shù)之間的關(guān)系; 2.分式不等式要注意大于等于或小于等于的情況中,分母要不為零; 3.高次不等式要注重對重因式的處理. (二)主要方法: 1.解一元二次不等式通常先將不等式化為或的形式,然后求出對應(yīng)方程的根(若有根的話),再寫出不等式的解:大于時兩根之外,小于時兩根之間; 2.分式不等式主要是轉(zhuǎn)化為等價的一元一次、一元二次或者高次不等式來處理; 3.高次不等式主要利用“序軸標(biāo)根法”解. (三)例題分析: 例1.解下列不等式: (1);(2);(3). 解:(1);(2); (3)原不等式可化為. 例2.已知,, (1)若,求的取值范圍; (2)若,求的取值范圍. 解:, 當(dāng)時,;當(dāng)時,;當(dāng)時,. (1)若,則; (2)若, 當(dāng)時,滿足題意;當(dāng)時,,此時;當(dāng)時,不合題意. 所以,的取值范圍為. 例3.已知, (1)如果對一切,恒成立,求實(shí)數(shù)的取值范圍; (2)如果對,恒成立,求實(shí)數(shù)的取值范圍. 解:(1); (2)或或, 解得或或,∴的取值范圍為. 例4.已知不等式的解集為,則不等式的解集為 . 解法一:∵即的解集為, ∴不妨假設(shè),則即為,解得. 解法二:由題意:, ∴可化為即,解得. 例5.(《高考計劃》考點(diǎn)4“智能訓(xùn)練第16題”)已知二次函數(shù)的圖象過點(diǎn),問是否存在常數(shù),使不等式對一切都成立? 解:假設(shè)存在常數(shù)滿足題意, ∵的圖象過點(diǎn),∴ ① 又∵不等式對一切都成立, ∴當(dāng)時,,即,∴ ② 由①②可得:,∴, 由對一切都成立得:恒成立, ∴的解集為, ∴且,即且, ∴,∴, ∴存在常數(shù)使不等式對一切都成立. (四)鞏固練習(xí): 1.若不等式對一切成立,則的取值范圍是. 2.若關(guān)于的方程有一正根和一負(fù)根,則. 3.關(guān)于的方程的解為不大于2的實(shí)數(shù),則的取值范圍為. 4.不等式的解集為. 五.課后作業(yè):《高考計劃》考點(diǎn)4,智能訓(xùn)練3,4,5,9,13,14,15.- 1.請仔細(xì)閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)第一輪復(fù)習(xí) 第4課時一元二次不等式的解法教案 2019 2020 年高 數(shù)學(xué) 第一輪 復(fù)習(xí) 課時 一元 二次 不等式 解法 教案
鏈接地址:http://www.3dchina-expo.com/p-2592516.html