2019-2020年高中數(shù)學向量的加法運算及其幾何意義.doc
《2019-2020年高中數(shù)學向量的加法運算及其幾何意義.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學向量的加法運算及其幾何意義.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學向量的加法運算及其幾何意義 【知識與技能】 1.掌握向量的加法運算,并理解其幾何意義; 2.會用向量加法的三角形法則和平行四邊形法則作出已知兩個向量的和向量; 3.將向量運算與熟悉的數(shù)的運算進行類比,理解向量加法運算的交換律和結合律,會用它們進行向量計算. 【過程與方法】 數(shù)能進行運算,向量也能進行運算.但是,對向量與數(shù)之間不同的地方要非常小心,也即運算中除了考慮大小,還要考慮方向問題.借助于物理中力的合成可進行向量的加法運算,即用“三角形法則”和“平行四邊形法則”建立了向量加法運算與幾何圖形之間的關系.根據(jù)三角形法則,和向量+對應的有向線段,就是平移、對應的有向線段,使得()的起點與()的終點重合,則以()的起點為起點以()的終點為終點的有向線段就是和向量+對應的有向線段;而根據(jù)平行四邊形法則,就是平移、對應的有向線段,使得、的起點重合,并以、對應線段為邊作平行四邊形,以公共起點為起點,對角線所對應的有向線段就是和向量+對應的有向線段. 一、教學目標 (1)掌握向量的加法的定義,會用向量加法的三角形法則和會用向量加法的平行四邊形法則作兩個向量的和向量; (2)掌握向量加法的交換律和結合律,并會用它們進行計算; (3)啟發(fā)學生能夠發(fā)現(xiàn)問題和提出問題,善于獨立思考,學會分析問題和創(chuàng)造地解決問題; (4)培養(yǎng)學生化歸的數(shù)學思想. 二、教學重點:向量的加法的定義,向量加法的三角形法則和平行四邊形法則,作兩個向量的和向量; 三、教學難點:對向量加法定義的理解. 四、教具:多媒體、投影儀 五、教學過程 ㈠設置情境 請同學看這樣一個問題:(投影) (1)由于大陸和臺灣沒有直航,因此xx年春節(jié)探親,要先從臺北到香港,再從香港到上海,這兩次位移之和時什么? (2)如圖1(2),飛機從到,再改變方向從到,則兩次位移的和是,應該是_____________. (3)如圖1(3),船的速度是,水流速度是則兩個速度的和是應該是___________. 圖1 A B C A B C 上海 香港 臺北 答:(1)這人兩次的位移的和是從臺北到上海;(2)飛機兩次位移的和是;(3)兩個速度的和是. 兩個向量的和仍是一個向量.本節(jié)課就來研究兩個向量的和(板書課題:向量的加法). ㈡探索研究 (1)向量的加法的定義: 已知向量,在平面內(nèi)任取一點A,作,則向量叫做 向量的和。記作: 即 零向量與任意向量,有 (2)兩個向量的和向量的作法: ①三角形法則:兩個向量“首尾”相接 注意:1三角形法則對于兩個向量共線時也適用; 2兩個向量的和向量仍是一個向量 [例1]已知向量,求作 向量 作法:在平面內(nèi)任取一點O,作 ,則 ②平行四邊形法則: 由同一點A為起點的兩個已知向量為鄰邊作平行四邊形ABCD,則以A為起點 的向量就是向量的和。這種作兩個向量和的方法叫做平行四邊形法則 注意:平行四邊形法則對于兩個向量共線時不適用 (3)向量和與數(shù)量和的區(qū)別: ①當向量不共線時,的方向與不同向,且 ②當向量同向時,的方向與同向,且 當向量反向時,若,則的方向與同向,且 ;若,則的方向與反向,且 ; (4)向量的運算律: ①交換律: 證明:當向量不共線時,如上圖,作平行四邊形ABCD,使, 則, 因為, 所以 當向量共線時,若與同向,由向量加法的定義知: 與同向,且 與同向,且,所以 若與反向,不妨設,同樣由向量加法的定義知: 與同向,且 與同向,且,所以 綜上, ②結合律: 學生自己驗證。 由于向量的加法滿足交換律和結合律,對于多個向量的加法運算就可以按照任意 的次序與任意的組合來進行了 例如: [例2]如圖,一艘船從A點出發(fā)以的速度向垂直于對 岸的方向行駛,同時喝水的流速為,求船實際航行的速度的 大小與方向。 解:設表示船垂直于對岸的速度,表示水流的速度, 以AD,AB為鄰邊作平行四邊形ABCD,則就是船實際航行的 速度 在中,, 所以 因為 答:船實際航行的速度的大小為,方向與水流速間的夾角為 例3 用向量加法證明:兩條對角線互相平分的四邊形是平行四邊形 已知:如圖,在四邊形ABCD中,對角線AC和BD交于點O,且AO=OC,BO=OD D C O A B 求證:ABCD是平行四邊形. 證明:∵AO=OC,BO=OD,∴=,= ∵=+,=+,∴,即AD=BC且AD|| BC,∴ABCD是平行四邊形 (5)演練反饋(投影) (1)在平行四邊形中,,則用、表示向量的是( ) A.+ B. C.0 D.+ (2)若為△內(nèi)一點,,則是△的( ) A.內(nèi)心 B.外心 C.垂心 D.重心 (3)下列各等式或不等式中一定不能成立的個數(shù)( ) ① ② ③ ④ A.0 B.1 C.2 D.3 (6)總結提煉 (1)是一個向量,在三角形法則下:平移向量,使的起點與的終點重合,則就是以的起點為起點,的終點為終點的新向量. (2)一組首尾相接的向量和:,如圖5. 圖5 (3)對任意兩個向量、, 任有成立. ㈢板書設計 ●題目答疑 習題(課本P)參考答案 1.略 2.略 3. (1);(2) 4. (1) c (2)f (3)f (4)g- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019 2020 年高 數(shù)學 向量 加法 運算 及其 幾何 意義
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2696457.html