欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

牛頓萊布尼茨公式

上傳人:梔**** 文檔編號:27386197 上傳時間:2021-08-17 格式:DOC 頁數(shù):1 大?。?0KB
收藏 版權申訴 舉報 下載
牛頓萊布尼茨公式_第1頁
第1頁 / 共1頁

最后一頁預覽完了!喜歡就下載吧,查找使用更方便

18 積分

下載資源

資源描述:

《牛頓萊布尼茨公式》由會員分享,可在線閱讀,更多相關《牛頓萊布尼茨公式(1頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 2 牛頓—萊布尼茨公式 用定義來計算定積分一般是很困難的,下面將要介紹的牛頓 —萊布尼茨公式不僅為定積分的計算提供了一個有效的方法,而且在理論上把定積分與不定積分聯(lián)系了起來。 定理 9-1 若函數(shù) f ( x) 在 [ a,b] 上連續(xù),且存在原函數(shù) F ( x) ,則 f ( x) 在 [ a, b] 上可積,且 b f (x)dx F (b) a b F ( x) 這即為牛頓 — 萊布尼茨公式,也常記為 f ( x)dx a F (a) b a F (b) F ( a) 。

2、注 1:在實際應用中, 定理的條件是可以適當減弱的, 如 F (x) :在在 [a, b] 上連續(xù), 在 (a,b)內可導, 且 F ( x) f ( x), x (a, b) 。而 f ( x) 只要在在 [ a, b] 上可積即可。 注 2:本定理對 F ( x) 的要求是多余的。 例 1 利用牛頓 —萊布尼茨公式計算下列定積分: b n dx ( n 為整數(shù)); b dx b x dx ; 1) x 2) x 2 ( 0

3、 a sin xdx ; 5) 2 x 2 dx. 4) x 4 0 0 注:因為定積分是一類和式的極限,故可以借助于定積分來為某些特殊的極限。 例 2 利用定積分求極限: lim ( 1 1 1) J. n n 1 n 2 2n 解答方法: 利用定積分來為極限的關鍵是把掃求極限轉化成某函數(shù)的積分和的形式。 作業(yè): P206: 1(2)、( 4)、( 6)、( 8); P207: 2( 2)、( 3)。 1

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!