2019-2020年高考數(shù)學專題復習導練測 第四章 第2講 同角三角函數(shù)的基本關系與誘導公式 理 新人教A版.doc
《2019-2020年高考數(shù)學專題復習導練測 第四章 第2講 同角三角函數(shù)的基本關系與誘導公式 理 新人教A版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高考數(shù)學專題復習導練測 第四章 第2講 同角三角函數(shù)的基本關系與誘導公式 理 新人教A版.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學專題復習導練測 第四章 第2講 同角三角函數(shù)的基本關系與誘導公式 理 新人教A版 一、選擇題 1. cos=( ) A. B. C.- D.- 解析 cos=cos=cos=cos=-cos=-,故選C. 答案 C 2.已知tan θ=2,則sin2θ+sin θcos θ-2cos2θ= ( ). A.- B. C.- D. 解析 由于tan θ=2,則sin2θ+sin θcos θ-2cos2θ====. 答案 D 3.若=,則tan 2α= ( ). A.- B. C.- D. 解析 由=,得=,所以tan α=-3,所以tan 2α==. 答案 B 4.已知f(cos x)=cos 3x,則f(sin 30)的值為( ). A.0 B.1 C.-1 D. 解析 ∵f(cos x)=cos 3x, ∴f(sin 30)=f(cos 60)=cos 180=-1. 答案 C 5.若sin θ,cos θ是方程4x2+2mx+m=0的兩根,則m的值為( ). A.1+ B.1- C.1 D.-1- 解析 由題意知:sin θ+cos θ=-,sin θcos θ=, 又(sin θ+cos θ)2=1+2sin θcos θ, ∴=1+, 解得:m=1,又Δ=4m2-16m≥0, ∴m≤0或m≥4,∴m=1-. 答案 B 6.若Sn=sin +sin +…+sin (n∈N*),則在S1,S2,…,S100中,正數(shù)的個數(shù)是 ( ). A.16 B.72 C.86 D.100 解析 由sin =-sin ,sin =-sin ,…,sin =-sin ,sin =sin =0,所以S13=S14=0. 同理S27=S28=S41=S42=S55=S56=S69=S70=S83=S84=S97=S98=0,共14個,所以在S1,S2,…,S100中,其余各項均大于0,個數(shù)是100-14=86(個).故選C. 答案 C 二、填空題 7.已知cosα=-,且α是第二象限的角,則tan(2π-α)=________. 解析 由α是第二象限的角,得sinα==,tanα==-,則tan(2π-α)=-tanα=. 答案 8.已知α為第二象限角,則cos α+sin α=________. 解析 原式=cos α+sin α =cos α+sin α =cos α+sin α=0. 答案 0 9.已知sin α=+cos α,且α∈,則的值為________. 解析 依題意得sin α-cos α=,又(sin α+cos α)2+(sin α-cos α)2=2,即(sin α+cos α)2+2=2,故(sin α+cos α)2=;又α∈,因此有sin α+cos α=,所以==-(sin α+cos α)=-. 答案?。? 10. f(x)=asin(πx+α)+bcos(πx+β)+4(a,b,α,β均為非零實數(shù)),若f(2 012)=6,則f(2 013)=________. 解析 f(2 012)=asin(2 012π+α)+bcos(2 012π+β)+4=asin α+bcos β+4=6,∴asin α+bcos β=2,∴f(2 013)=asin(2 013π+α)+bcos(2 013π+β)+4=-asin α-bcos β+4=2. 答案 2 三、解答題 11.已知=3+2, 求cos2(π-α)+sin cos +2sin2(α-π)的值. 解析 由已知得=3+2, ∴tan α===. ∴cos2(π-α)+sin cos +2sin2(α-π) =cos2α+(-cos α)(-sin α)+2sin2α =cos2α+sin αcos α+2sin2α = = ==. 12.已知sin(3π+α)=2sin,求下列各式的值: (1);(2)sin2α+sin 2α. 解 法一 由sin(3π+α)=2sin,得tan α=2. (1)原式===-. (2)原式=sin2α+2sin αcos α= ==. 法二 由已知得sin α=2cos α. (1)原式==-. (2)原式===. 13.是否存在α∈,β∈(0,π),使等式sin(3π-α)=cos,cos(-α)=-cos(π+β)同時成立?若存在,求出α,β的值;若不存在,請說明理由. 解 假設存在角α,β滿足條件, 則由已知條件可得 由①2+②2,得sin2α+3cos2α=2. ∴sin2α=,∴sin α=.∵α∈,∴α=. 當α=時,由②式知cos β=, 又β∈(0,π),∴β=,此時①式成立; 當α=-時,由②式知cos β=, 又β∈(0,π),∴β=,此時①式不成立,故舍去. ∴存在α=,β=滿足條件. 14.已知函數(shù)f(x)=tan. (1)求f(x)的定義域與最小正周期; (2)設α∈,若f=2cos 2α,求α的大?。? 解 (1)由2x+≠+kπ,k∈Z,得x≠+,k∈Z.所以f(x)的定義域為,f(x)的最小正周期為. (2)由f=2cos 2α,得tan=2cos 2α, =2(cos2α-sin2α), 整理得=2(cos α+sin α)(cos α-sin α). 因為α∈,所以sin α+cos α≠0. 因此(cos α-sin α)2=,即sin 2α=. 由α∈,得2α∈.所以2α=,即α=.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高考數(shù)學專題復習導練測 第四章 第2講 同角三角函數(shù)的基本關系與誘導公式 新人教A版 2019 2020 年高 數(shù)學 專題 復習 導練測 第四 三角函數(shù) 基本 關系 誘導 公式 新人
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2787641.html