《2019-2020年高考數(shù)學大二輪總復(fù)習 增分策略 專題三 三角函數(shù) 解三角形與平面向量 第3講 平面向量試題.doc》由會員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學大二輪總復(fù)習 增分策略 專題三 三角函數(shù) 解三角形與平面向量 第3講 平面向量試題.doc(18頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學大二輪總復(fù)習 增分策略 專題三 三角函數(shù) 解三角形與平面向量 第3講 平面向量試題
1.(xx課標全國Ⅰ)設(shè)D為△ABC所在平面內(nèi)一點,=3,則( )
A.=-+ B.=-
C.=+ D.=-
2.(xx四川)設(shè)四邊形ABCD為平行四邊形,||=6,||=4,若點M,N滿足=3,=2,則等于( )
A.20 B. 15 C.9 D.6
3.(xx江蘇)已知向量a=(2,1),b=(1,-2),若ma+nb=(9,-8)(m,n∈R),則m-n的值為________.
4.(xx湖南)在平面直角坐標系中,O為原點,A(-1,0),B(0,),C(3,0),動點D滿足||=1,則|++|的最大值是________.
1.考查平面向量的基本定理及基本運算,多以熟知的平面圖形為背景進行考查,多為選擇題、填空題、難度中低檔.2.考查平面向量的數(shù)量積,以選擇題、填空題為主,難度低;向量作為工具,還常與三角函數(shù)、解三角形、不等式、解析幾何結(jié)合,以解答題形式出現(xiàn).
熱點一 平面向量的線性運算
(1)在平面向量的化簡或運算中,要根據(jù)平面向量基本定理選好基底,變形要有方向不能盲目轉(zhuǎn)化;
(2)在用三角形加法法則時要保證“首尾相接”,結(jié)果向量是第一個向量的起點指向最后一個向量終點所在的向量;在用三角形減法法則時要保證“同起點”,結(jié)果向量的方向是指向被減向量.
例1 (1)(xx陜西)設(shè)0<θ<,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a∥b,則tan θ=______.
(2)如圖,在△ABC中,AF=AB,D為BC的中點,AD與CF交于點E.若=a,=b,且=xa+yb,則x+y=________.
思維升華 (1)對于平面向量的線性運算,要先選擇一組基底;同時注意共線向量定理的靈活運用.(2)運算過程中重視數(shù)形結(jié)合,結(jié)合圖形分析向量間的關(guān)系.
跟蹤演練1 (1)(xx黃岡中學期中)已知向量i與j不共線,且=i+mj,=ni+j,m≠1,若A,B,D三點共線,則實數(shù)m,n滿足的條件是( )
A.m+n=1 B.m+n=-1
C.mn=1 D.mn=-1
(2)(xx北京)在△ABC中,點M,N滿足=2,=.若=x+y,則x=________;y=________.
熱點二 平面向量的數(shù)量積
(1)數(shù)量積的定義:ab=|a||b|cos θ.
(2)三個結(jié)論
①若a=(x,y),則|a|==.
②若A(x1,y1),B(x2,y2),則
||=.
③若a=(x1,y1),b=(x2,y2),θ為a與b的夾角,
則cos θ==.
例2 (1)如圖,在平行四邊形ABCD中,已知AB=8,AD=5,=3,=2,則的值是________.
(2)在△AOB中,G為△AOB的重心,且∠AOB=60,若=6,則||的最小值是________.
思維升華 (1)數(shù)量積的計算通常有三種方法:數(shù)量積的定義,坐標運算,數(shù)量積的幾何意義;(2)可以利用數(shù)量積求向量的模和夾角,向量要分解成題中模和夾角已知的向量進行計算.
跟蹤演練2 (1)(xx山東)過點P(1,)作圓x2+y2=1的兩條切線,切點分別為A,B,則=________________________________________________________________________.
(2)(xx課標全國Ⅰ)已知A,B,C為圓O上的三點,若=(+),則與的夾角為________.
熱點三 平面向量與三角函數(shù)
平面向量作為解決問題的工具,具有代數(shù)形式和幾何形式的“雙重型”,高考常在平面向量與三角函數(shù)的交匯處命題,通過向量運算作為題目條件.
例3 已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<α
c,已知=2,cos B=,b=3.求:
(1)a和c的值;
(2)cos(B-C)的值.
1.如圖,在△ABC中,=,DE∥BC交AC于E,BC邊上的中線AM交DE于N,設(shè)=a,=b,用a,b表示向量.則等于( )
A.(a+b) B.(a+b)
C.(a+b) D.(a+b)
2.如圖,BC、DE是半徑為1的圓O的兩條直徑,=2,則等于( )
A.- B.- C.- D.-
3.已知向量a=(1,2),b=(cos α,sin α),且a⊥b,則tan(2α+)=________.
4.如圖,在半徑為1的扇形AOB中,∠AOB=60,C為弧上的動點,AB與OC交于點P,則最小值是_______________________________________________________.
二輪專題強化練
專題三
第3講 平面向量
A組 專題通關(guān)
1.(xx佛山月考)在平行四邊形ABCD中,AC為一條對角線,=(2,4),=(1,3),則等于( )
A.(2,4) B.(3,5)
C.(1,1) D.(-1,-1)
2.(xx安徽)△ABC是邊長為2的等邊三角形,已知向量a,b滿足=2a,=2a+b,則下列結(jié)論正確的是( )
A.|b|=1 B.a(chǎn)⊥b
C.a(chǎn)b=1 D.(4a+b)⊥
3.在△ABC中,N是AC邊上一點,且=,P是BN邊上的一點,若=m+,則實數(shù)m的值為( )
A. B.
C.1 D.3
4.(xx福建)已知⊥,||=,||=t,若點P是△ABC所在平面內(nèi)的一點,且=+,則的最大值等于( )
A.13 B.15 C.19 D.21
5.(xx湖北)已知向量⊥,||=3,則=________.
6.若點M是△ABC所在平面內(nèi)的一點,且滿足5=+3,則△ABM與△ABC的面積比值為________.
7.(xx天津)在等腰梯形ABCD中,已知AB∥DC,AB=2,BC=1,∠ABC=60.點E和F分別在線段BC和DC上,且=,=,則的值為________.
8.設(shè)向量a=(a1,a2),b=(b1,b2),定義一種向量積a?b=(a1b1,a2b2),已知向量m=(2,),n=(,0),點P(x,y)在y=sin x的圖象上運動,Q是函數(shù)y=f(x)圖象上的點,且滿足=m?+n(其中O為坐標原點),則函數(shù)y=f(x)的值域是________.
9.(xx惠州二調(diào))設(shè)向量a=(sin x,sin x),b=(cos x,sin x),x∈[0,].
(1)若|a|=|b|,求x的值;
(2)設(shè)函數(shù)f(x)=ab,求f(x)的最大值.
10.已知向量a=(2sin(ωx+),0),b=(2cos ωx,3)(ω>0),函數(shù)f(x)=ab的圖象與直線y=-2+的相鄰兩個交點之間的距離為π.
(1)求ω的值;
(2)求函數(shù)f(x)在[0,2π]上的單調(diào)遞增區(qū)間.
B組 能力提高
11.已知非零單位向量a與非零向量b滿足|a+b|=|a-b|,則向量b-a在向量a上的投影為( )
A.1 B.
C.-1 D.-
12.已知a,b是單位向量,ab=0,若向量c滿足|c-a-b|=1,則|c|的取值范圍是( )
A.[-1,+1] B.[-1,+2]
C.[1,+1] D.[1,+2]
13.(xx江蘇)設(shè)向量ak=(k=0,1,2,…,12),則(akak+1)的值為________.
14.(xx陜西)在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
(1)若++=0,求||;
(2)設(shè)=m+n(m,n∈R),用x,y表示m-n,并求m-n的最大值.
學生用書答案精析
第3講 平面向量
高考真題體驗
1.A [∵=3,∴-=3(-),
即4-=3,∴=-+.]
2.C [=+,
=-=-+,
∴=(4+3)(4-3)
=(162-92)=(1662-942)=9,選C.]
3.-3
解析 ∵a=(2,1),b=(1,-2),∴ma+nb=(2m+n,m-2n)=(9,-8),即解得故m-n=2-5=-3.
4.+1
解析 設(shè)D(x,y),由=(x-3,y)及
||=1知(x-3)2+y2=1,
即動點D的軌跡為以點C為圓心的單位圓.
又O++
=(-1,0)+(0,)+(x,y)
=(x-1,y+),
∴|++|=
.
問題轉(zhuǎn)化為圓(x-3)2+y2=1上的點與點P(1,-)間距離的最大值.
∵圓心C(3,0)與點P(1,-)之間的距離為=,
故的最大值為+1.
熱點分類突破
例1 (1) (2)-
解析 (1)因為a∥b,
所以sin 2θ=cos2θ,2sin θcos θ=cos2θ.
因為0<θ<,所以cos θ>0,
得2sin θ=cos θ,tan θ=.
(2)如圖,設(shè)FB的中點為M,連接MD.
因為D為BC的中點,M為FB的中點,所以MD∥CF.
因為AF=AB,所以F為AM的中點,E為AD的中點.
方法一 因為=a,=b,D為BC的中點,
所以=(a+b).
所以==(a+b).
所以=+=-+
=-b+(a+b)
=a-b.
所以x=,y=-,所以x+y=-.
方法二 易得EF=MD,MD=CF,
所以EF=CF,所以CE=CF.
因為=+=-+=-b+a,
所以=(-b+a)=a-b.
所以x=,y=-,則x+y=-.
跟蹤演練1 (1)C (2)?。?
解析 (1)因為A,B,D三點共線,所以
=λ?i+mj=λ(ni+j),m≠1,又向量i與j不共線,所以所以mn=1.
(2)如圖,=+
=+
=+(-)
=-,
∴x=,y=-.
例2 (1)22 (2)2
解析 (1)由=3,得==,=+=+,=-=+-=-.因為=2,所以(+
)(-)=2,即2-
-2=2.又因為2=25,2=64,所以=22.
(2)如圖,在△AOB中,==(+)
=(+),
又=||||cos 60=6,
∴||||=12,
∴||2=(+)2=(||2+||2+2)=(||2+||2+12)≥(2||||+12)=36=4(當且僅當||=||時取等號).
∴||≥2,故||的最小值是2.
跟蹤演練2 (1) (2)90
解析 (1)由題意,圓心為O(0,0),半徑為1.如圖所示,
∵P(1,),∴PA⊥x軸,PA=PB=.
∴△POA為直角三角形,其中OA=1,AP=,則OP=2,
∴∠OPA=30,∴∠APB=60.
∴=||||cos∠APB=cos 60=.
(2)∵=(+),
∴點O是△ABC中邊BC的中點,
∴BC為直徑,根據(jù)圓的幾何性質(zhì)有〈,〉=90.
例3 解 (1)∵b=(cos x,sin x),
c=(sin x+2sin α,cos x+2cos α),α=,
∴f(x)=bc
=cos xsin x+2cos xsin α+sin xcos x+2sin xcos α
=2sin xcos x+(sin x+cos x).
令t=sin x+cos x,
則2sin xcos x=t2-1,且-1c,所以a=3,c=2.
(2)在△ABC中,
sin B== =,
由正弦定理,
得sin C=sin B==.
因為a=b>c,
所以C為銳角,
因此cos C== =.
于是cos(B-C)=cos Bcos C+sin Bsin C=+=.
高考押題精練
1.C [因為DE∥BC,所以DN∥BM,則△AND∽△AMB,所以=.
因為=,所以=.
因為M為BC的中點,
所以=(+)=(a+b),
所以==(a+b).
故選C.]
2.B [∵=2,圓O的半徑為1,
∴||=,
∴=(+)(+)=2+(+)+=()2+0-1=-.]
3.-
解析 因為a=(1,2),b=(cos α,sin α),且a⊥b,
所以cos α+2sin α=0,
則tan α=-.
所以tan 2α==-.
所以tan(2α+)====-.
4.-
解析 因為=+,所以=(+)=+()2.又因為∠AOB=60,OA=OB,
∴∠OBA=60.OB=1.所以=||cos 120=-||.所以=-||+||2=(||-)2-≥-.故當且僅當||=時,最小值是-.
二輪專題強化練答案精析
第3講 平面向量
1.C [==-=(2,4)-(1,3)=(1,1).]
2.D [在△ABC中,由=-=2a+b-2a=b,
得|b|=2.
又|a|=1,所以ab=|a||b|cos 120=-1,所以(4a+b)=(4a+b)b=4ab+|b|2=4(-1)+4=0,所以(4a+b)⊥,故選D.]
3.B [如圖,因為=,所以=,
=m+=m+,因為B,P,N三點共線,
所以m+=1,所以m=.]
4.A [建立如圖所示坐標系,則
B,C(0,t),=,=(0,t),
=+=t+(0,t)=(1,4),∴P(1,4),=(-1,t-4)=17-≤17-2=13,
故選A.]
5.9
解析 因為⊥,所以=0.所以=(+)=2+=||2+0=32=9.
6.
解析 設(shè)AB的中點為D,
由5=+3,得3-3
=2-2,
即3=2.
如圖所示,故C,M,D三點共線,
且=,
也就是△ABM與△ABC對于邊AB的兩高之比為3∶5,
則△ABM與△ABC的面積比值為.
7.
解析 在等腰梯形ABCD中,AB∥DC,AB=2,BC=1,
∠ABC=60,∴CD=1,=+=+,
=+=+,
∴==+++=21cos 60+2+1cos 60+cos 120=.
8.[-,]
解析 令Q(c,d),由新的運算可得=m?+n=(2x,sin x)+(,0)=(2x+,sin x),
∴消去x得d=sin(c-),
∴y=f(x)=sin(x-),
易知y=f(x)的值域是[-,].
9.解 (1)由|a|2=(sin x)2+(sin x)2=4sin2x,
|b|2=(cos x)2+(sin x)2=1,
及|a|=|b|,得4sin2x=1.
又x∈[0,],從而sin x=,
所以x=.
(2)f(x)=ab=sin xcos x+sin2x
=sin 2x-cos 2x+=sin(2x-)+,
當x=∈[0,]時,sin(2x-)取最大值1.
所以f(x)的最大值為.
10.解 (1)因為向量a=(2sin(ωx+),0),b=(2cos ωx,3)(ω>0),所以函數(shù)f(x)=ab=4sin(ωx+)cos ωx=4[sin ωx(-)+cos ωx]cos ωx=2cos2ωx-2sin ωxcos ωx=(1+cos 2ωx)-sin 2ωx=2cos(2ωx+)+,
由題意,可知f(x)的最小正周期為T=π,所以=π,即ω=1.
(2)易知f(x)=2cos(2x+)+,當x∈[0,2π]時,2x+∈[,4π+],
故2x+∈[π,2π]或2x+∈[3π,4π]時,函數(shù)f(x)單調(diào)遞增,
所以函數(shù)f(x)的單調(diào)遞增區(qū)間為[,]和[,].
11.C [因為|a+b|=|a-b|,
所以(a+b)2=(a-b)2,
解得ab=0,所以向量b-a在向量a上的投影為|b-a|cos〈a,b-a〉==
=-|a|=-1.]
12.A [∵ab=0,且a,b是單位向量,
∴|a|=|b|=1.
又∵|c-a-b|2=c2-2c(a+b)+2ab+a2+b2=1,
∴2c(a+b)=c2+1.
∵|a|=|b|=1且ab=0,
∴|a+b|=,
∴c2+1=2|c|cos θ(θ是c與a+b的夾角).
又-1≤cos θ≤1,∴0
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2019-2020年高考數(shù)學大二輪總復(fù)習
增分策略
專題三
三角函數(shù)
解三角形與平面向量
第3講
平面向量試題
2019
2020
年高
數(shù)學
二輪
復(fù)習
策略
專題
三角形
平面
向量
試題
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2835824.html