2019-2020年高三3月模擬考試 數學文 含答案.doc
《2019-2020年高三3月模擬考試 數學文 含答案.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三3月模擬考試 數學文 含答案.doc(4頁珍藏版)》請在裝配圖網上搜索。
2019-2020年高三3月模擬考試 數學文 含答案 劉 斌 龔小銘 一、 選擇題:本大題共10小題,每小題5分,共50分 1、已知是純虛數,對應的點在實軸上,那么等于( D ) A B. C. D. 2、設,,則的值為( D ) 第4題圖 A. B. C. D. 3、平面向量與的夾角為,,則= ( C ) A. 7 B. C. D. 3 4、已知實數,若執(zhí)行如下左圖所示的程序框圖,則輸出的 不小于 47的概率為( A ) A. B. C. D. 5、已知,實數a、b、c滿足<0,且0<a<b<c,若實數是函數的一個零點,那么下列不等式中,不可能成立的是 ( D ) A.<a B.>b C.<c D.>c 6、已知偶函數在R上的任一取值都有導數,且則曲線在處的切線的斜率為 ( D ) A.2 B.-2 C.1 D.-1 7、某幾何體的三視圖如圖所示,當取最大值時,這個幾何體的體積為( D ) A. B. C. D. 8、定義:關于的不等式的解集叫的鄰域.已知的鄰域為區(qū)間,其中分別為橢圓的長半軸和短半軸.若此橢圓的一焦點與拋物線的焦點重合,則橢圓的方程為( B. ) A. B. C. D. 9、已知函數設,且函數F(x)的零點均在區(qū)間內,圓的面積的最小值是 ( A ) A. B. C. D. 10、點P的底邊長為,高為2的正三棱柱表面上的動點,MN是該棱柱內切球的一條直徑,則 取值范圍是 (C ) A.[0,2] B.[0,3] C.[0,4] D.[—2,2] 二、填空題:本大題共5小題,每小題5分,共25分. 11、若直線與直線互相垂直,則實數的值為 1 12、已知等差數列的公差和首項都不等于0,且成等比數列,則 3 13、已知點P的坐標,過點P的直線l與圓相交于A、B兩點,則的最小值為 4 14、對于定義域和值域均為的函數,定義,,…,,n=1,2,3,….滿足的點稱為f的階周期點. (1)設則f的階周期點的個數是______2_____; (2)設則f的階周期點的個數是___4_______ . 15、給出以下五個命題: ①點的一個對稱中心 ②設回時直線方程為,當變量x增加一個單位時,y大約減少2.5個單位 ③命題“在△ABC中,若,則△ABC為等腰三角形”的逆否命題為真命題 ④對于命題p:“”則“” ⑤設, ,則“”是 “” 成立的充分不必要條件. 不正確的是 ④⑤ 三、解答題(本大題共計6小題,滿分75分,解答應寫出文字說明,證明過程或演算步驟.) 16、(本小題滿分12分)我校某班的一次數學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的破壞,但可見部分如下,據此解答如下問題. (1)求全班人數及分數在[80,90)之間的頻數; (2)估計該班的平均分數,并計算頻率分布直方圖中[80,90)間的矩形的高; (3)若要從分數在[80,100]之間的試卷中任取兩份分析學生失分情況,在抽取的試卷中,求至少有一份分數在[90,100]之間的概率. 解:(1)由莖葉圖知,分數在[50,60)之間的頻數為2, 頻率為0.00810=0.08 全班人數=25 所以分數在[80,90)之間的頻數為25-2-7-10-2=4…………3分 (2)分數在[50,60)之間的總分數為56+58=114 分數在[60,70)之間的總分數為607+2+3+3+5+6+8+9=456 分數在[70,80)之間的總分數為7010+1+2+2+3+4+5+6+7+8+9=747 分數在[80,90)之間的總分數為854=340分數在[90,100]之間的總分數為95+98=193 所以,該班的平均分數為……………5分 估計平均分數時,以下解法也給分: 分數在[50,60)之間的頻率為=0.08分數在[60,70)之間的頻率為=0.28 分數在[70,80)之間的頻率為=0.40分數在[80,90)之間的頻率為=0.16 分數在[90,100]之間的頻率為=0.08所以該班的平均分數約為550.08+650.28+750.40+850.16+950.08 =73.8 所以頻率分布直方圖中[80,90)間的矩形的高為10=0.016………………8分 (3)將[80,90)之間的4個分數編號為1,2,3,4,[90,100]之間的2個分數編號為5,6, 在[80,100]之間的試卷中任取兩份的基本事件為(1,2),(1,3),(1,4),(1,5)(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15個. 其中,至少有一份在[90,100]之間的基本事件有9個,故至少有一份分數在[90,100]之間的概率是=0.6… 17、(本小題滿分12分)已知ABCD是矩形,AD=2AB,E,F分別是線段AB,BC的中點,PA⊥平面ABCD. (Ⅰ)求證:DF⊥平面PAF; (Ⅱ)在棱PA上找一點G,使EG∥平面PFD,當PA=AB=4時,求四面體E-GFD的體積. (Ⅰ)證明:在矩形ABCD中,因為AD=2AB,點F是BC的中點, 所以平面 …………6分 再過作交于,所以平面,且………10分 所以平面平面,所以平面,點即為所求. 因為,則,AG=1 ………………12分 18、(本小題滿分12分)已知向量. (1)若,求; (2)設的三邊滿足,且邊所對應的角的大小為,若關于的方程有且僅有一個實數根,求的值. 【解】(1)……………4分 由條件有,故……………6分 (2)由余弦定理有,又,從而 ……………8分 由此可得,結合圖象可得或.……………12分 19、(本小題滿分12分)設正項數列都是等差數列,且公差相等,(1)求的通項公式;(2)若的前三項,記數列數列的前n項和為 解:設的公差為,則,即, 由是等差數列得到: (或=……2分,) 則且,所以,……4分, 所以:……5分,……6分 (2)由,得到:等比數列的公比, 所以:, ……8分 所以……10分 …… ……12分 20.(本小題滿分13分)已知函數. (1)若曲線在點處的切線與直線垂直,求實數的值. (2)若,求的最小值; (3)在(Ⅱ)上求證:. 解:(Ⅰ)的定義域為,,根據題意有, 所以解得或. ………………………………4分 (Ⅱ) 當時,因為,由得,解得, 由得,解得, 所以函數在上單調遞減,在上單調遞增; …………………8分 (Ⅲ)由(2)知,當a>0, 的最小值為 令 當 。 …………………13分 21、(本小題滿分14分)已知中心在原點,焦點在坐標軸上的橢圓的方程為它的離心率為,一個焦點是(-1,0),過直線上一點引橢圓的兩條切線,切點分別是A、B. (1)求橢圓的方程; (2)若在橢圓上的點處的切線方程是.求證:直線AB恒過定點C,并求出定點C的坐標; (3)是否存在實數,使得求證: (點C為直線AB恒過的定點).若存在,請求出,若不存在請說明理由 解:(I)設橢圓方程為的焦點是,故,又,所以,所以所求的橢圓方程為. ………………………4分 (II)設切點坐標為,,直線上一點M的坐標,則切線方程分別為,,又兩切線均過點M,即,即點A,B的坐標都適合方程,故直線AB的方程是,顯然直線恒過點(1,0),故直線AB恒過定點.…………………………………8分 (III)將直線AB的方程,代入橢圓方程,得 ,即, 所以,不妨設, ,同理,…………12分 所以 , 即,……………………………14分- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三3月模擬考試 數學文 含答案 2019 2020 年高 模擬考試 數學 答案
裝配圖網所有資源均是用戶自行上傳分享,僅供網友學習交流,未經上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2856902.html