欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

蘇教版數(shù)學選修2-1:第3章 空間向量與立體幾何 3.2.2 課時作業(yè)(含答案)

上傳人:每**** 文檔編號:30266582 上傳時間:2021-10-10 格式:DOC 頁數(shù):8 大?。?56KB
收藏 版權申訴 舉報 下載
蘇教版數(shù)學選修2-1:第3章 空間向量與立體幾何 3.2.2 課時作業(yè)(含答案)_第1頁
第1頁 / 共8頁
蘇教版數(shù)學選修2-1:第3章 空間向量與立體幾何 3.2.2 課時作業(yè)(含答案)_第2頁
第2頁 / 共8頁
蘇教版數(shù)學選修2-1:第3章 空間向量與立體幾何 3.2.2 課時作業(yè)(含答案)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

8 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《蘇教版數(shù)學選修2-1:第3章 空間向量與立體幾何 3.2.2 課時作業(yè)(含答案)》由會員分享,可在線閱讀,更多相關《蘇教版數(shù)學選修2-1:第3章 空間向量與立體幾何 3.2.2 課時作業(yè)(含答案)(8頁珍藏版)》請在裝配圖網上搜索。

1、 3.2.2 空間線面關系的判定 課時目標 1.能用向量語言表述線線、線面、面面的垂直和平行關系.2.能用向量方法證明有關直線和平面位置關系的一些定理(包括三垂線定理). 1.用直線的方向向量和平面的法向量表示平行、垂直關系 設空間兩條直線l1,l2的方向向量分別為e1,e2,兩個平面α1,α2的法向量分別為n1,n2,則 平行 垂直 l1與l2 l1與α1 α1與α2 2.三垂線定理 文字語言:在平面內的一條直線,如果它和這個平面的一條________在這個平面內的________垂直,那么它也和這條________垂直.

2、幾何語言:?a⊥b 3.直線與平面垂直的判定定理 文字語言:如果一條直線和平面內的________________________,那么這條直線垂直于這個平面. 幾何語言:?l⊥α 一、填空題 1.平面ABCD中,A(0,1,1),B(1,2,1),C(-1,0,-1),若a=(-1,y,z),且a為平面ABC的法向量,則y2=______. 2.若直線l的方向向量為a=(1,0,2),平面α的法向量為u=(-2,0,-4),則直線l與平面α的位置關系為__________. 3.已知點P是平行四邊形ABCD所在的平面外一點,如果=(2,-1,-4),=(4,2,0),=(-

3、1,2,-1).對于結論:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正確的是________.(寫出所有正確的序號) 4.已知向量a=(1,1,0),b=(-1,0,2),且ka+b與2a-b互相垂直,則k=________. 5.平面α的一個法向量為(1,2,0),平面β的一個法向量為(2,-1,0),則平面α與平面β的位置關系是_______________________________________________. 6.已知a=(1,1,0),b=(1,1,1),若b=b1+b2,且b1∥a,b2⊥a,則b1,b2分別為________________.

4、 7.已知A(0,2,3),B(-2,1,6),C(1,-1,5),若=,且a⊥,a⊥,則向量a的坐標為________. 8.設平面α、β的法向量分別為u=(1,2,-2),v=(-3,-6,6),則α、β的位置關系為________. 二、解答題 9.在正方體ABCD—A1B1C1D1中,O是B1D1的中點,求證:B1C∥平面ODC1. 10. 如圖所示,在六面體ABCD—A1B1C1D1中,四邊形ABCD是邊長為2的正方形,四邊形A1B1C1D1是邊長為1的正方形,DD1⊥平面A1B1C1D1,DD1

5、⊥平面ABCD,DD1=2. 求證:(1)A1C1與AC共面,B1D1與BD共面; (2)平面A1ACC1⊥平面B1BDD1. 能力提升 11.在正方體ABCD—A1B1C1D1中,G、E、F分別是DD1、BB1、D1B1的中點. 求證:(1)EF⊥平面A1DC1;(2)EF∥平面GAC. 12.在正方體ABCD—A1B1C1D1中,M、N分別是棱A1B1、A1D1的中點,E、F分別是棱B1C1、C1D1的中點. 證明:(1)E、F、B、D四點共面; (2

6、)平面AMN∥平面BDFE. 1.運用空間向量將幾何推理轉化為向量運算時,應注意處理和把握以下兩大關系:一是一些幾何題能用純幾何法和向量法解決,體現(xiàn)了純幾何法和向量法在解題中的相互滲透;二是向量法解題時也有用基向量法和坐標向量法兩種選擇. 2.利用向量法解立體幾何問題的“三步曲” (1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉化為向量問題; (2)進行向量運算,研究點、直線、平面之間的關系; (3)根據(jù)運算結果的幾何意義來解釋相關問題. 3.2.2 空間線面關

7、系的判定 知識梳理 1. 平行 垂直 l1與l2 e1∥e2 e1⊥e2 l1與α1 e1⊥n1 e1∥n1 α1與α2 n1∥n2 n1⊥n2 2.斜線 射影 斜線 aα a⊥c 3.兩條相交直線垂直 l⊥a l⊥b a∩b=A 作業(yè)設計 1.1 2.l⊥α 解析 ∵u=-2a,∴a∥u,∴l(xiāng)⊥α. 3.①②③ 4. 解析 ∵ka+b=(k-1,k,2), 2a-b=(3,2,-2),(ka+b)⊥(2a-b), ∴3(k-1)+2k-4=0,即k=. 5.垂直 解析 ∵(1,2,0)(2,-1,0)=0,∴兩法向量垂直,從而兩平面也垂

8、直. 6.(1,1,0),(0,0,1) 解析 ∵b1∥a,∴設b1=(λ,λ,0),b2=b-b1 =(1-λ,1-λ,1),由b2⊥a,即ab2=0, ∴1-λ+1-λ=0,得λ=1, ∴b1=(1,1,0),b2=(0,0,1). 7.(1,1,1)或(-1,-1,-1) 解析 設a=(x,y,z),由題意=(-2,-1,3),=(1,-3,2),∴ 解得x=1,y=1,z=1,或x=-1,y=-1,z=-1, 即a=(1,1,1)或(-1,-1,-1). 8.平行 9.證明 方法一 ∵=,B1A1D, ∴B1C∥A1D,又A1D面ODC1, ∴B1C

9、∥平面ODC1. 方法二 ∵=+=+++=+. ∴,,共面. 又B1C面ODC1,∴B1C∥面ODC1. 方法三  建系如圖,設正方體的棱長為1,則可得D(0,0,0),B1(1,1,1),C(0,1,0),O,C1(0,1,1), =(-1,0,-1), =, =. 設平面ODC1的法向量為n=(x0,y0,z0), 則,得. 令x0=1,得y0=1,z0=-1,∴n=(1,1,-1). 又n=-11+01+(-1)(-1)=0, ∴⊥n,∴B1C∥平面ODC1. 10.證明 以D為原點 ,以DA,DC,DD1所在直線分別為x軸,y軸,z軸建立空

10、間直角坐標系,如圖,則有A(2,0,0), B(2,2,0),C(0,2,0), A1(1,0,2),B1(1,1,2), C1(0,1,2),D1(0,0,2). (1)∵=(-1,1,0),=(-2,2,0), =(1,1,0),=(2,2,0), ∴=2,=2. ∴與平行,與平行, 于是A1C1與AC共面,B1D1與BD共面. (2)=(0,0,2)(-2,2,0)=0, =(2,2,0)(-2,2,0)=0, ∴⊥,⊥. DD1與DB是平面B1BDD1內的兩條相交直線, ∴AC⊥平面B1BDD1.又平面A1ACC1過AC, ∴平面A1ACC1⊥平面B1BDD

11、1. 11.證明  設正方體的棱長為2,以、、為正交基底建立空間直角坐標系D—xyz,如圖,則A(2,0,0)、C(0,2,0)、E(2,2,1)、F(1,1,2)、G(0,0,1)、A1(2,0,2)、C(0,2,2). (1)=(1,1,2)-(2,2,1) =(-1,-1,1), =(0,0,0)-(2,0,2)=(-2,0,-2), =(0,2,2)-(0,0,0)=(0,2,2), ∵=(-1,-1,1)(-2,0,-2) =(-1)(-2)+(-1)0+1(-2)=0, =(-1,-1,1)(0,2,2) =-10+(-1)2+12=0, ∴EF⊥

12、A1D,EF⊥DC1. 又A1D∩DC1=D,A1D、DC1平面A1DC1, ∴EF⊥平面A1DC1. (2)取AC的中點O,則O(1,1,0), ∴=(-1,-1,1),∴OG∥EF. 又∵OG平面GAC,EF平面GAC, ∴EF∥平面GAC. 12.證明  不妨設正方體的棱長為2,建立如圖所示空間直角坐標系,則A(2,0,0),M(2,1,2),N(1,0,2),B(2,2,0),E(1,2,2),F(xiàn)(0,1,2). (1)=(-1,-1,0), =(2,2,0). ∵=-2,∴∥. 故E、F、B、D四點共面. (2)=(0,1,2),=(-1,-1,0),=(0,-1,-2). 設n=(x,y,z)為平面BDFE的法向量, 則 令z=1,得n=(2,-2,1). ∵n=(2,-2,1)(-1,-1,0)=0, n=(2,-2,1)(0,-1,-2)=0, ∴n⊥,n⊥,即n也是平面AMN的法向量. ∴平面AMN∥平面BDFE. 希望對大家有所幫助,多謝您的瀏覽!

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關資源

更多
正為您匹配相似的精品文檔
關于我們 - 網站聲明 - 網站地圖 - 資源地圖 - 友情鏈接 - 網站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網版權所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對上載內容本身不做任何修改或編輯。若文檔所含內容侵犯了您的版權或隱私,請立即通知裝配圖網,我們立即給予刪除!