2019-2020年高考數(shù)學(xué)復(fù)習(xí) 專題07 平面向量 數(shù)量積的性質(zhì)易錯(cuò)點(diǎn).doc
《2019-2020年高考數(shù)學(xué)復(fù)習(xí) 專題07 平面向量 數(shù)量積的性質(zhì)易錯(cuò)點(diǎn).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué)復(fù)習(xí) 專題07 平面向量 數(shù)量積的性質(zhì)易錯(cuò)點(diǎn).doc(2頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué)復(fù)習(xí) 專題07 平面向量 數(shù)量積的性質(zhì)易錯(cuò)點(diǎn) 主標(biāo)題:數(shù)量積的性質(zhì)易錯(cuò)點(diǎn) 副標(biāo)題:從考點(diǎn)分析數(shù)量積的性質(zhì)在高考中的易錯(cuò)點(diǎn),為學(xué)生備考提供簡(jiǎn)潔有效的備考策略。 關(guān)鍵詞:數(shù)量積,性質(zhì),易錯(cuò)點(diǎn) 難度:3 重要程度:5 內(nèi)容: 一、忽視兩平面向量夾角是銳角或鈍角的充要條件而致錯(cuò) 【例1】已知,與的夾角為45,求當(dāng)向量的夾角為銳角時(shí)的取值范圍. 錯(cuò)解:設(shè)的夾角為銳角, 則, 所以, 即, 所以, 解得。 剖析:上述的,有可能=1,此時(shí)=0,不是銳角,所以應(yīng)該從上述的的取值范圍中去掉共線同向時(shí)的的值就可以了。 正解:當(dāng)共線同向時(shí),設(shè), 則,得。 所以的夾角為銳角時(shí),的取值范圍是。 二、由于實(shí)數(shù)中的結(jié)論在平面向量中的推廣而致錯(cuò) 【例2】已知,是兩個(gè)非零向量,證明當(dāng)與垂直時(shí),的模取到最小值。 錯(cuò)解:當(dāng)與垂直時(shí)有, 即,所以, 。 剖析:結(jié)論不正確,在平面向量中,不能把許多實(shí)數(shù)的結(jié)論想當(dāng)然拿過(guò)來(lái)用。 正確:, 看做關(guān)于的二次函數(shù),在對(duì)稱軸時(shí),模取到最小值。 此時(shí),恰好,即當(dāng)與垂直時(shí)的模取到最小值。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué)復(fù)習(xí) 專題07 平面向量 數(shù)量積的性質(zhì)易錯(cuò)點(diǎn) 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 專題 07 平面 向量 數(shù)量 性質(zhì) 易錯(cuò)點(diǎn)
鏈接地址:http://www.3dchina-expo.com/p-3155024.html