2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3.3 導(dǎo)數(shù)的實(shí)際應(yīng)用學(xué)案(含解析)新人教B版選修1 -1.docx
《2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3.3 導(dǎo)數(shù)的實(shí)際應(yīng)用學(xué)案(含解析)新人教B版選修1 -1.docx》由會(huì)員分享,可在線閱讀,更多相關(guān)《2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3.3 導(dǎo)數(shù)的實(shí)際應(yīng)用學(xué)案(含解析)新人教B版選修1 -1.docx(17頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
3.3.3 導(dǎo)數(shù)的實(shí)際應(yīng)用 學(xué)習(xí)目標(biāo) 1.了解導(dǎo)數(shù)在解決實(shí)際問(wèn)題中的作用.2.掌握利用導(dǎo)數(shù)解決簡(jiǎn)單的實(shí)際生活中的優(yōu)化問(wèn)題. 知識(shí)點(diǎn) 生活中的優(yōu)化問(wèn)題 1.生活中經(jīng)常遇到求利潤(rùn)最大、用料最省、效率最高等問(wèn)題,這些問(wèn)題通常稱為優(yōu)化問(wèn)題. 2.利用導(dǎo)數(shù)解決優(yōu)化問(wèn)題的實(shí)質(zhì)是求函數(shù)最值. 3.解決優(yōu)化問(wèn)題的基本思路: 上述解決優(yōu)化問(wèn)題的過(guò)程是一個(gè)典型的數(shù)學(xué)建模過(guò)程. 1.生活中常見(jiàn)到的收益最高、用料最省等問(wèn)題就是數(shù)學(xué)中的最大、最小值問(wèn)題.( √ ) 2.解決應(yīng)用問(wèn)題的關(guān)鍵是建立數(shù)學(xué)模型.( √ ) 題型一 幾何中的最值問(wèn)題 例1 請(qǐng)你設(shè)計(jì)一個(gè)包裝盒如圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得ABCD四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,E,F(xiàn)在AB上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)AE=FB=xcm. (1)若廣告商要求包裝盒側(cè)面積S最大,則x應(yīng)取何值? (2)若廣告商要求包裝盒容積V最大,則x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值. 考點(diǎn) 幾何類型的優(yōu)化問(wèn)題 題點(diǎn) 幾何體體積的最值問(wèn)題 解 (1)由題意知包裝盒的底面邊長(zhǎng)為xcm, 高為(30-x)cm,0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2020版高中數(shù)學(xué) 第三章 導(dǎo)數(shù)及其應(yīng)用 3.3.3 導(dǎo)數(shù)的實(shí)際應(yīng)用學(xué)案含解析新人教B版選修1 -1 2020 高中數(shù)學(xué) 第三 導(dǎo)數(shù) 及其 應(yīng)用 3.3 實(shí)際 解析 新人 選修
鏈接地址:http://www.3dchina-expo.com/p-3850948.html