《理數(shù)北師大版練習(xí):第十章 第九節(jié) 離散型隨機(jī)變量的均值與方差、正態(tài)分布 Word版含解析》由會(huì)員分享,可在線閱讀,更多相關(guān)《理數(shù)北師大版練習(xí):第十章 第九節(jié) 離散型隨機(jī)變量的均值與方差、正態(tài)分布 Word版含解析(11頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
高考數(shù)學(xué)精品復(fù)習(xí)資料
2019.5
課時(shí)作業(yè)
A組——基礎(chǔ)對(duì)點(diǎn)練
1.(20xx高考湖北卷)設(shè)X~N(μ1,σ),Y~N(μ2,σ),這兩個(gè)正態(tài)分布密度曲線如圖所示.下列結(jié)論中正確的是( )
A.P(Y≥μ2)≥P(Y≥μ1)
B.P(X≤σ2)≤P(X≤σ1)
C.對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t)
D.對(duì)任意正數(shù)t,P(X≥t)≥P(Y≥t)
解析:由正態(tài)分布密度曲線的性質(zhì)可知,X~N(μ1,σ),Y~N(μ2,σ)的密度曲線分別關(guān)于直線x=μ1,x=μ2對(duì)稱,因此結(jié)合題中所給圖像可得,μ1<μ
2、2,所以P(Y≥μ2)<P(Y≥μ1),故A錯(cuò)誤.又X~N(μ1,σ)的密度曲線較Y~N(μ2,σ)的密度曲線“瘦高”,所以σ1<σ2,所以P(X≤σ2)>P(X≤σ1),B錯(cuò)誤.對(duì)任意正數(shù)t,P(X≤t)≥P(Y≤t),P(X≥t)≤P(Y≥t),C正確,D錯(cuò)誤.
答案:C
2.(20xx長(zhǎng)沙模擬)一臺(tái)儀器每啟動(dòng)一次都隨機(jī)地出現(xiàn)一個(gè)5位的二進(jìn)制數(shù) (例如:若a1=a3=a5=1,a2=a4=0,則A=10101),其中二進(jìn)制數(shù)A的各位數(shù)中,已知a1=1,ak(k=2,3,4,5)出現(xiàn)0的概率為,出現(xiàn)1的概率為,記X=a1+a2+a3+a4+a5,現(xiàn)在儀器啟動(dòng)一次,則E(X)=( )
3、A. B.
C. D.
解析:法一:X的所有可能取值為1,2,3,4,5,P(X=1)=C40=,P(X=2)=C31=,P(X=3)=C22=,P(X=4)=C13=,P(X=5)=C04=,所以E(X)=1+2+3+4+5=.
法二:由題意,X的所有可能取值為1,2,3,4,5,設(shè)Y=X-1,則Y的所有可能取值為0,1,2,3,4,因此Y~B(4,),所以E(Y)=4=,從而E(X)=E(Y+1)=E(Y)+1=+1=.
答案:B
3.已知袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)(n=1,2,3,4).現(xiàn)從袋中任取一球,X表示所取
4、球的標(biāo)號(hào).若η=aX+b,E(η)=1,D(η)=11,則a+b的值是( )
A.1或2 B.0或2
C.2或3 D.0或3
解析:由題意可知,X的所有可能取值為0,1,2,3,4,E(X)=0+1+2+3+4=,
D(X)=2+2+(2-)2+2+2=.
由D(η)=a2D(X),得a2=11,即a=2.
又E(η)=aE(X)+b,所以當(dāng)a=2時(shí),由1=2+b,
得b=-2,此時(shí)a+b=0.
當(dāng)a=-2時(shí),由1=-2+b,得b=4,此時(shí)a+b=2.故選B.
答案:B
4.若隨機(jī)事件A在1次試驗(yàn)中發(fā)生的概率為p(0<p<1),用隨機(jī)變量ξ表示A在1次試驗(yàn)中發(fā)生的次數(shù)
5、,則的最大值為( )
A.2+2 B.2
C.2- D.2-2
解析:隨機(jī)變量ξ的所有可能取值為0,1,且P(ξ=1)=p,P(ξ=0)=1-p,即ξ~B(1,p),根據(jù)公式得E(ξ)=p,D(ξ)=p(1-p),則=2-.而2p+≥2=2,當(dāng)且僅當(dāng)2p=,即p=時(shí)取等號(hào).因此當(dāng)p=時(shí),取得最大值2-2.
答案:D
5.若某科技小制作課的模型制作規(guī)則是:每位學(xué)生最多制作3次,一旦制作成功,則停止制作,否則可制作3次.設(shè)某學(xué)生一次制作成功的概率為p(p≠0),制作次數(shù)為X,若X的數(shù)學(xué)期望E(X)>,則p的取值范圍是( )
A. B.
C. D.
解析:由已知條件可
6、得P(X=1)=p,P(X=2)=(1-p)p,P(X=3)=(1-p)2p+(1-p)3=(1-p)2,則E(X)=P(X=1)+2P(X=2)+3P(X=3)=p+2(1-p)p+3(1-p)2=p2-3p+3>,解得p>或p<,又p∈(0,1],可得p∈,故選C.
答案:C
6.(20xx高考廣東卷)已知隨機(jī)變量X服從二項(xiàng)分布B(n,p).若E(X)=30,D(X)=20,則p= .
解析:由得p=.
答案:
7.已知X是離散型隨機(jī)變量,P(X=x1)=,P(X=x2)=,且x1<x2.若E(X)=,D(X)=,則x1+x2的值為
7、 .
解析:由題意得X的所有可能取值為x1,x2,所以E(X)=x1+x2=,D(X)=2+2=,整理得,
解得或(舍去),故x1+x2=3.
答案:3
8.(20xx淄博模擬)某4S店在一次促銷活動(dòng)中,讓每位參與者從盒子中任取一個(gè)由0~9中任意三個(gè)數(shù)字組成的“三位遞減數(shù)”(即個(gè)位數(shù)字小于十位數(shù)字,十位數(shù)字小于百位數(shù)字).若“三位遞減數(shù)”中的三個(gè)數(shù)字之和既能被2整除又能被5整除,則可以享受5萬元的優(yōu)惠;若“三位遞減數(shù)”中的三個(gè)數(shù)字之和僅能被2整除,則可以享受3萬元的優(yōu)惠;其他結(jié)果享受1萬元的優(yōu)惠.
(1)試寫出所有個(gè)位數(shù)字為4的“三位遞減數(shù)”;
(2)若小明參加了這次汽
8、車促銷活動(dòng),求他得到的優(yōu)惠金額X的分布列及數(shù)學(xué)期望E(X).
解析:(1)個(gè)位數(shù)字為4的“三位遞減數(shù)”有:984,974,964,954,874,864,854,764,754,654,共10個(gè).
(2)由題意,不同的“三位遞減數(shù)”共有C=120(個(gè)).
小明得到的優(yōu)惠金額X的取值可能為5,3,1.
當(dāng)X=5時(shí),三個(gè)數(shù)字之和可能為20或10,
當(dāng)三個(gè)數(shù)字之和為20時(shí),有983,974,965,875,共4個(gè)“三位遞減數(shù)”;
當(dāng)三個(gè)數(shù)字之和為10時(shí),有910,820,730,721,640,631,541,532,共8個(gè)“三位遞減數(shù)”,
所以P(X=5)==.
當(dāng)X=3時(shí),三個(gè)數(shù)
9、字之和只能被2整除,即這三個(gè)數(shù)字只能是三個(gè)偶數(shù)或兩個(gè)奇數(shù)一個(gè)偶數(shù),但不包括能被10整除的“三位遞減數(shù)”,
故P(X=3)===.
故P(X=1)=1-P(X=5)-P(X=3)=1--=.
所以他得到的優(yōu)惠金額X的分布列為
X
5
3
1
P
數(shù)學(xué)期望E(X)=5+3+1=2.2(萬元).
9.(20xx唐山模擬)退休年齡延遲是平均預(yù)期壽命延長(zhǎng)和人口老齡化背景下的一種趨勢(shì).某機(jī)構(gòu)為了解某城市市民的年齡構(gòu)成,按1%的比例從年齡在20~80歲(含20歲和80歲)之間的市民中隨機(jī)抽取600人進(jìn)行調(diào)查,并將年齡按[20,30),[30,40),[40,50)
10、,[50,60),[60,70),[70,80]進(jìn)行分組,繪制成頻率分布直方圖,如圖所示.規(guī)定年齡在[20,40)歲的人為“青年人”,[40,60)歲的人為“中年人”,[60,80]歲的人為“老年人”.
(1)根據(jù)頻率分布直方圖估計(jì)該城市60歲以上(含60歲)的人數(shù),若每一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值來代表,試估算所調(diào)查的600人的平均年齡;
(2)將上述人口分布的頻率視為該城市年齡在20~80歲的人口分布的概率,從該城市年齡在20~80歲的市民中隨機(jī)抽取3人,記抽到“老年人”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
解析:(1)由頻率分布直方圖可知60歲以上(含60歲)的頻率
11、為(0.01+0.01)10=0.2,
故樣本中60歲以上(含60歲)的人數(shù)為6000.2=120,故該城市60歲以上(含60歲)的人數(shù)為1201%=12 000.
所調(diào)查的600人的平均年齡為
250.1+350.2+450.3+550.2+650.1+750.1=48(歲).
(2)法一:由頻率分布直方圖知,“老年人”所占的頻率為,所以從該城市年齡在20~80歲的市民中隨機(jī)抽取1人,抽到“老年人”的概率為,
分析可知X的所有可能取值為0,1,2,3,
P(X=0)=C03=,
P(X=1)=C12=,
P(X=2)=C21=,
P(X=3)=C30=.
所以X的分布列為
12、
X
0
1
2
3
P
E(X)=0+1+2+3=.
法二:由題意知每次抽到“老年人”的概率都是,且X~B(3,),P(X=k)=
Ck3-k,k=0,1,2,3,
所以X的分布列為
X
0
1
2
3
P
故E(X)=3=.
B組——能力提升練
1.(20xx南陽(yáng)模擬)設(shè)隨機(jī)變量X~B(2,p),隨機(jī)變量Y~B(3,p),若P(X≥1)=,則D(3Y+1)=( )
A.2 B.3
C.6 D.7
解析:法一:由題意得P(X≥1)=P(X=1)+P(X=2)=Cp(1-p)+Cp2=,所以p=,則Y~
13、B(3,),故D(Y)=3=,所以D(3Y+1)=9D(Y)=9=6.
法二:因?yàn)镻(X≥1)=1-P(X=0)=,所以P(X=0)=C(1-p)2=,所以p=,則Y~B,故D(Y)=3=,所以D(3Y+1)=9D(Y)=9=6.
答案:C
2.已知甲、乙兩個(gè)工人在同樣的條件下生產(chǎn)某種材料,日生產(chǎn)量相等,每天出廢品的情況如表所示,則下列結(jié)論正確的是( )
工人
甲
乙
廢品數(shù)
0
1
2
3
0
1
2
3
概率
0.4
0.3
0.2
0.1
0.3
0.5
0.2
0
A.甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B.乙生產(chǎn)的產(chǎn)品質(zhì)量比
14、甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C.兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D.無法判斷誰(shuí)生產(chǎn)的產(chǎn)品質(zhì)量好一些
解析:根據(jù)離散型隨機(jī)變量的分布列可知甲生產(chǎn)的產(chǎn)品出廢品的平均值為00.4+10.3+20.2+30.1=1,乙生產(chǎn)的產(chǎn)品出廢品的平均值為00.3+10.5+20.2+30=0.9,結(jié)合實(shí)際可知乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些,故選B.
答案:B
3.已知隨機(jī)變量ξ的所有可能取值分別為1,2,3,4,5.若數(shù)學(xué)期望E(ξ)=4.2,則ξ取值為5的概率至少為( )
A.0.1 B.0.15
C.0.2 D.0.25
解析:設(shè)ξ的取值為1,2,3,4,5的概率分別為p1,p2,p3
15、,p4,p5,pi∈[0,1],i=1,2,3,4,5,則p1+p2+p3+p4+p5=1,則p1+2p2+3p3+4(1-p1-p2-p3-p5)+5p5=4.2?p5=0.2+3p1+2p2+p3≥0.2,當(dāng)p1=p2=p3=0時(shí)等號(hào)成立.
答案:C
4.(20xx西安模擬)前不久,社科院發(fā)布了度“全國(guó)城市居民幸福排行榜”,北京市成為本年度最“幸福城”,隨后,某師大附中學(xué)生會(huì)組織部分同學(xué),用“10分制”隨機(jī)調(diào)查“陽(yáng)光”社區(qū)人們的幸福度,現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后一位數(shù)字為葉).
(1)指出這組數(shù)據(jù)的眾數(shù)
16、和中位數(shù);
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸福”.求從這16人中隨機(jī)選取3人,至多有1人是“極幸福”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記ξ表示抽到“極幸?!钡娜藬?shù),求ξ的分布列及數(shù)學(xué)期望.
解析:(1)眾數(shù):8.6;中位數(shù):8.75.
(2)設(shè)Ai(i=0,1,2,3)表示所取3人中有i個(gè)人是“極幸?!?,至多有1人是“極幸福”記為事件A,則P(A)=P(A0)+P(A1)=+=.
(3)法一:ξ的所有可能取值為0,1,2,3.
P(ξ=0)=3=;P(ξ=1)=C2=;
P(ξ=2)=C2=;P(ξ
17、=3)=3=.
ξ的分布列為:
ξ
0
1
2
3
P
所以E(ξ)=0+1+2+3=0.75.
法二:ξ的所有可能取值為0,1,2,3.
則ξ~B,
P(ξ=k)=Ck3-k,k=0,1,2,3.
所以E(ξ)=3=0.75.
5.(20xx高考山東卷)甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ).在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是,乙每輪猜對(duì)的概率是;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響,各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加
18、兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(2)“星隊(duì)”兩輪得分之和X的分布列和數(shù)學(xué)期望E(X).
解析:(1)記事件A:“甲第一輪猜對(duì)”,
記事件B:“乙第一輪猜對(duì)”,
記事件C:“甲第二輪猜對(duì)”,
記事件D:“乙第二輪猜對(duì)”,
記事件E:“‘星隊(duì)’至少猜對(duì)3個(gè)成語(yǔ)”.
由題意,E=ABCD+BCD+ACD+ABD+ABC,
由事件的獨(dú)立性與互斥性,
P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)P()P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)P()=+2=,
所以“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率為.
(2)由題意,隨機(jī)變量 X可能的取值為0,1,2,3,4,6.
由事件的獨(dú)立性與互斥性,得
P(X=0)==,P(X=1)=2==,
P(X=2)=+++=,
P(X=3)=+==,
P(X=4)=2
==,
P(X=6)===.
可得隨機(jī)變量X的分布列為
X
0
1
2
3
4
6
P
所以數(shù)學(xué)期望E(X)=0+1+2+3+4+6=.