三管齊下貴州省2014屆高三數學 復習試題35 簡單的線性規(guī)劃問題 理含解析新人教A版
《三管齊下貴州省2014屆高三數學 復習試題35 簡單的線性規(guī)劃問題 理含解析新人教A版》由會員分享,可在線閱讀,更多相關《三管齊下貴州省2014屆高三數學 復習試題35 簡單的線性規(guī)劃問題 理含解析新人教A版(10頁珍藏版)》請在裝配圖網上搜索。
1、 35 簡單的線性規(guī)劃問題 導學目標: 1.從實際情境中抽象出二元一次不等式組.2.了解二元一次不等式的幾何意義,能用平面區(qū)域表示二元一次不等式組.3.從實際情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決. 自主梳理 1.二元一次不等式(組)表示的平面區(qū)域 (1)判斷不等式Ax+By+C>0所表示的平面區(qū)域,可在直線Ax+By+C=0的某一側的半平面內選取一個特殊點,如選原點或坐標軸上的點來驗證Ax+By+C的正負.當C≠0時,常選用______________. 對于任意的二元一次不等式Ax+By+C>0(或<0),無論B為正值還是負值,我們都可以把y項的系數變形為
2、正數,當B>0時, ①Ax+By+C>0表示直線Ax+By+C=0______的區(qū)域; ②Ax+By+C<0表示直線Ax+By+C=0______的區(qū)域. (2)畫不等式Ax+By+C>0表示的平面區(qū)域時,其邊界直線應為虛線;畫不等式Ax+By+C≥0表示的平面區(qū)域時,邊界直線應為實線.畫二元一次不等式表示的平面區(qū)域,常用的方法是:直線定“界”、原點定“域”. 2.線性規(guī)劃的有關概念 (1)線性約束條件——由條件列出一次不等式(或方程)組. (2)線性目標函數——由條件列出一次函數表達式. (3)線性規(guī)劃問題:求線性目標函數在約束條件下的最大值或最小值問題. (4)可行解:滿足
3、________________的解(x,y). (5)可行域:所有________組成的集合. (6)最優(yōu)解:使______________取得最大值或最小值的可行解. 3.利用線性規(guī)劃求最值,一般用圖解法求解,其步驟是: (1)在平面直角坐標系內作出可行域. (2)作出目標函數的等值線. (3)確定最優(yōu)解:在可行域內平行移動目標函數等值線,從而確定__________. 自我檢測 1.(2011北京東城1月檢測)在平面直角坐標系中,若點(-2,t)在直線x-2y+4=0的上方,則t的取值范圍是( ) A.(-∞,1) B.(1,+∞) C.(-1,+∞)
4、 D.(0,1) 2.不等式(x-2y+1)(x+y-3)≤0在坐標平面內表示的區(qū)域(用陰影部分表示)應是( ) 3.(2010重慶)設變量x,y滿足約束條件則z=3x-2y的最大值為( ) A.0 B.2 C.4 D.6 4.(2010浙江)若實數x,y滿足不等式組且x+y的最大值為9,則實數m等于( ) A.-2 B.-1 C.1 D.2 5.(2010天津河西高三期中)已知實數x,y滿足則z=2x-y的最大值為________. 探究點一 不等式組表示的平面區(qū)域 例1 畫出不等式組表示的平面區(qū)域,并回答下列問題: (1)指出
5、x,y的取值范圍; (2)平面區(qū)域內有多少個整點? 變式遷移1 (2011安慶模擬)在平面直角坐標系中,有兩個區(qū)域M、N,M是由三個不等式y≥0,y≤x和y≤2-x確定的;N是隨t變化的區(qū)域,它由不等式t≤x≤t+1 (0≤t≤1)所確定.設M、N的公共部分的面積為f(t),則f(t)等于( ) A.-2t2+2t B.(t-2)2 C.1-t2 D.-t2+t+ 探究點二 求目標函數的最值 例2 (2010天津)設變量x,y滿足約束條件則目標函數z=4x+2y的最大值為( ) A.12 B.10 C.8 D.2 變式
6、遷移2 (2010山東)設變量x,y滿足約束條件則目標函數z=3x-4y的最大值和最小值分別為( ) A.3,-11 B.-3,-11 C.11,-3 D.11,3 探究點三 線性規(guī)劃的實際應用 例3 某公司計劃2010年在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告總費用不超過9萬元.甲、乙電視臺的廣告收費標準分別為500元/分和200元/分.假定甲、乙兩個電視臺為該公司所做的每分鐘廣告能給公司帶來的收益分別為0.3萬元和0.2萬元.問:該公司如何分配在甲、乙兩個電視臺的廣告時間,才能使公司的收益最大,最大收益是多少萬元?
7、 變式遷移3 (2010四川)某加工廠用某原料由甲車間加工出A產品,由乙車間加工出B產品,甲車間加工一箱原料需耗費工時10小時,可加工出7千克A產品,每千克A產品獲利40元,乙車間加工一箱原料需耗費工時6小時,可加工出4千克B產品,每千克B產品獲利50元.甲、乙兩車間每天共能完成至多70箱原料的加工,每天甲、乙兩車間耗費工時總和不得超過480小時,甲、乙兩車間每天總獲利最大的生產計劃為( ) A.甲車間加工原料10箱,乙車間加工原料60箱 B.甲車間加工原料15箱,乙車間加工原料55箱 C.甲車間加工原料18箱,乙車間加工原料50箱 D.甲車間加工原料40箱,乙車間加工
8、原料30箱 數形結合思想的應用 例 (12分)變量x、y滿足 (1)設z=4x-3y,求z的最大值; (2)設z=,求z的最小值; (3)設z=x2+y2,求z的取值范圍. 【答題模板】 解 由約束條件 作出(x,y)的可行域如圖所示. 由,解得A. 由,解得C(1,1).由, 解得B(5,2).[4分] (1)由z=4x-3y,得y=x-. 當直線y=x-過點B時,-最小,z最大. ∴zmax=45-32=14.[6分] (2)∵z==,∴z的值即是可行域中的點與原點O連線的斜率. 觀察圖形可知zmin=kOB=.[9分] (3)z=x2+y2的
9、幾何意義是可行域上的點到原點O的距離的平方.結合圖形可知,可行域上的點到原點的距離中, dmin=|OC|=,dmax=|OB|=.∴2≤z≤29.[12分] 【突破思維障礙】 1.求解目標函數不是直線形式的最值的思維程序是: →→→ 2.常見代數式的幾何意義主要有以下幾點: (1)表示點(x,y)與原點(0,0)的距離; 表示點(x,y)與點(a,b)的距離. (2)表示點(x,y)與原點(0,0)連線的斜率; 表示點(x,y)與點(a,b)連線的斜率. 這些代數式的幾何意義能使所求問題得以轉化,往往是解決問題的關鍵. 【易錯點剖析】 本題會出現對(2)(3)無從下手
10、的情況,原因是學生沒有數形結合思想的應用意識,不知道從目標函數表示的幾何意義入手解題. 1.在直角坐標系xOy內,已知直線l:Ax+By+C=0與點P(x0,y0),若Ax0+By0+C>0,則點P在直線l上方,若Ax0+By0+C<0,則點P在直線l下方. 2.在直線l:Ax+By+C=0外任意取兩點P(x1,y1)、Q(x2,y2),若P、Q在直線l的同一側,則Ax1+By1+C 與Ax2+By2+C同號;若P、Q在直線l異側,則Ax1+By1+C與Ax2+By2+C異號,這個規(guī)律可概括為“同側同號,異側異號”. 3.線性規(guī)劃解決實際問題的步驟:①分析并將已知數據列出表格;②確
11、定線性約束條件;③確定線性目標函數;④畫出可行域;⑤利用線性目標函數(直線)求出最優(yōu)解;⑥實際問題需要整數解時,應適當調整,以確定最優(yōu)解. (滿分:75分) 一、選擇題(每小題5分,共25分) 1.(2011龍巖月考)下面給出的四個點中,位于表示的平面區(qū)域內的點是( ) A.(0,2) B.(-2,0) C.(0,-2) D.(2,0) 2.在平面直角坐標系xOy中,已知平面區(qū)域A={(x,y)|x+y≤1,且x≥0,y≥0},則平面區(qū)域B={(x+y,x-y)|(x,y)∈A}的面積為( ) A.2 B.1 C. D. 3.(
12、2011廣東)已知平面直角坐標系xOy上的區(qū)域D由不等式組給定,若M(x,y)為D上的動點,點A的坐標為(,1),則z=的最大值為( ) A.4 B.3 C.4 D.3 4.(2011安徽)設變量x,y滿足|x|+|y|≤1,則x+2y的最大值和最小值分別為( ) A.1,-1 B.2,-2 C.1,-2 D.2,-1 5.(2011四川)某運輸公司有12名駕駛員和19名工人,有8輛載重量為10噸的甲型卡車和7輛載重量為6噸的乙型卡車.某天需送往A地至少72噸的貨物,派用的每輛車需滿載且只運送一次,派用的每輛甲型卡車需配2名工人,運送一次可
13、得利潤450元;派用的每輛乙型卡車需配1名工人,運送一次可得利潤350元.該公司合理計劃當天派用兩類卡車的車輛數,可得最大利潤z等于( ) A.4 650元 B.4 700元 C.4 900元 D.5 000元 二、填空題(每小題4分,共12分) 6.(2010北京改編)設不等式組表示的平面區(qū)域為D.若指數函數y=ax的圖象上存在區(qū)域D上的點,則a的取值范圍是________. 7.(2011長沙一中月考)已知實數x、y同時滿足以下三個條件:①x-y+2≤0;②x≥1;③x+y-7≤0,則的取值范圍是______________. 8.(2011湖南師大月考)設不
14、等式組表示的平面區(qū)域為M,若函數y=k(x+1)+1的圖象經過區(qū)域M,則實數k的取值范圍是____________. 三、解答題(共38分) 9.(12分)(2010廣東)某營養(yǎng)師要為某個兒童預訂午餐和晚餐.已知一個單位的午餐含12個單位的碳水化合物,6個單位的蛋白質和6個單位的維生素C;一個單位的晚餐含8個單位的碳水化合物,6個單位的蛋白質和10個單位的維生素C.另外,該兒童這兩餐需要的營養(yǎng)中至少含64個單位的碳水化合物,42個單位的蛋白質和54個單位的維生素C. 如果一個單位的午餐、晚餐的費用分別是2.5元和4元,那么要滿足上述的營養(yǎng)要求,并且花費最少,應當為該兒童分別預訂多少個單位
15、的午餐和晚餐? 10.(12分)已知 求:(1)z=x+2y-4的最大值; (2)z=x2+y2-10y+25的最小值; (3)z=的范圍. 11.(14分)(2011杭州調研)預算用2 000元購買單件為50元的桌子和20元的椅子,希望使桌子和椅子的總數盡可能的多,但椅子數不少于桌子數,且不多于桌子數的1.5倍,問桌子、椅子各買多少才行? 35 簡單的線性規(guī)劃問題 自主梳理 1.(1)原點(0,0)?、偕戏健、谙路健?.(4)線性
16、約束條件 (5)可行解 (6)目標函數 3.(3)最優(yōu)解 自我檢測 1.B 2.C 3.C 4.C 5.7 課堂活動區(qū) 例1 解題導引 在封閉區(qū)域內找整點數目時,若數目較小時,可畫網格逐一數出;若數目較大,則可分x=m逐條分段統計. 解 (1)不等式x-y+5≥0表示直線x-y+5=0上及右下方的點的集合.x+y≥0表示直線x+y=0上及右上方的點的集合,x≤3表示直線x=3上及左方的點的集合. 所以,不等式組 表示的平面區(qū)域如圖所示. 結合圖中可行域得x∈,y∈[-3,8]. (2)由圖形及不等式組知 當x=3時,-3≤y≤8,有12個整點; 當x=2時,-2≤
17、y≤7,有10個整點;
當x=1時,-1≤y≤6,有8個整點;
當x=0時,0≤y≤5,有6個整點;
當x=-1時,1≤y≤4,有4個整點;
當x=-2時,2≤y≤3,有2個整點;
∴平面區(qū)域內的整點共有2+4+6+8+10+12=42(個).
變式遷移1 D [作出由不等式組組成的平面區(qū)域M,即△AOE表示的平面區(qū)域,
當t=0時,
f(0)=11=,
當t=1時,
f(1)=11=,
當0 18、(1)=,
綜上可知選D.]
例2 解題導引 1.求目標函數的最值,必須先準確地作出線性可行域再作出目標函數對應的直線,據題意確定取得最優(yōu)解的點,進而求出目標函數的最值.
2.線性目標函數z=ax+by取最大值時的最優(yōu)解與b的正負有關,當b>0時,最優(yōu)解是將直線ax+by=0在可行域內向上平移到端點(一般是兩直線交點)的位置得到的,當b<0時,則是向下方平移.
B
[畫出可行域如圖中陰影部分所示,目標函數z=4x+2y可轉化為y=-2x+,
作出直線y=-2x并平移,顯然當其過點A時縱截距最大.解方程組
得A(2,1),∴zmax=10.]
變式遷移2 A [作出可行域如 19、圖所示.
目標函數y=x-z,則過B、A點時分別取到最大值與最小值.易求B(5,3),A(3,5).
∴zmax=35-43=3,zmin=33-45=-11.]
例3 解題導引 解線性規(guī)劃應用問題的一般步驟是:(1)分析題意,設出未知量;
(2)列出線性約束條件和目標函數;(3)作出可行域并利用數形結合求解;(4)作答.
解 設公司在甲電視臺和乙電視臺做廣告的時間分別為x分鐘和y分鐘,總收益為z元,
由題意得
目標函數為z=3 000x+2 000y.
二元一次不等式組等價于
作出二元一次不等式組所表示的平面區(qū)域,即可行域,如圖所示.
作直線l:3 000x+2 20、000y=0,即3x+2y=0.
平移直線l,從圖中可知,當直線l過點M時,目標函數取得最大值.
由方程解得x=100,y=200.
所以點M的坐標為(100,200).
所以zmax=3 000x+2 000y=700 000(元).
答 該公司在甲電視臺做100分鐘廣告,在乙電視臺做200分鐘廣告,公司的收益最大,最大收益是70萬元.
變式遷移3 B [
設甲車間加工原料x箱,乙車間加工原料y箱,
由題意可知
甲、乙兩車間每天總獲利為z=280x+200y.
畫出可行域如圖所示.
點M(15,55)為直線x+y=70和直線10x+6y=480的交點,由圖象知在 21、點M(15,55)處z取得最大值.]
課后練習區(qū)
1.C 2.B 3.C 4.B 5.C
6.(1,3]
7.
解析 由
?A(1,6),
?B,
∴kOA=6,kOB=.
∴k∈,即∈.
8.
解析
作可行域,如圖.
因為函數y=k(x+1)+1的圖象是過點P(-1,1),且斜率為k的直線l,由圖知,當直線l過點A(1,2)時,k取最大值,當直線l過點B(3,0)時,k取最小值-,故k∈.
9.解 設該兒童分別預訂x,y個單位的午餐和晚餐,共花費z元,則z=2.5x+4y.(2分)
可行域為 即(6分)
作出可行域如圖所示:
(9分)
經 22、試驗發(fā)現,當x=4,y=3時,花費最少,為2.54+43=22(元).故應當為兒童分別預訂4個單位的午餐和3個單位的晚餐.(12分)
10.解
作出可行域如圖所示,并求出頂點的坐標A(1,3)、B(3,1)、C(7,9).
(1)易知可行域內各點均在直線x+2y-4=0的上方,故x+2y-4>0,將點C(7,9)代入z得最大值為21.(4分)
(2)z=x2+y2-10y+25=x2+(y-5)2表示可行域內任一點(x,y)到定點M(0,5)的距離的平方,過M作直線AC的垂線,易知垂足N在線段AC上,
故z的最小值是|MN|2=.(8分)
(3)z=2表示可行域內任一點(x,y)與定點Q連線的斜率的兩倍,
因此kQA=,kQB=,
故z的范圍為.(12分)
11.解 設桌子、椅子分別買x張、y把,
目標函數z=x+y,(2分)
把所給的條件表示成不等式組,
即約束條件為(6分)
由 解得
所以A點的坐標為.
由 解得
所以B點的坐標為.(9分)
所以滿足條件的可行域是以A、B、
O(0,0)為頂點的三角形區(qū)域(如圖).(12分)
由圖形可知,目標函數z=x+y在可行域內的最優(yōu)解為
B,但注意到x∈N*,y∈N*,故取
故買桌子25張,椅子37把是最好的選擇.(14分)
10
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當頭廉字入心爭當公安隊伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅守廉潔底線
- 2025做擔當時代大任的中國青年PPT青年思想教育微黨課
- 2025新年工作部署會圍繞六個干字提要求
- XX地區(qū)中小學期末考試經驗總結(認真復習輕松應考)
- 支部書記上黨課筑牢清廉信念為高質量發(fā)展營造風清氣正的環(huán)境
- 冬季消防安全知識培訓冬季用電防火安全
- 2025加強政治引領(政治引領是現代政黨的重要功能)
- 主播直播培訓直播技巧與方法
- 2025六廉六進持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領鄉(xiāng)村振興工作總結
- XX中小學期末考試經驗總結(認真復習輕松應考)
- 幼兒園期末家長會長長的路慢慢地走