《安徽專用高考數(shù)學總復習 第九章第8課時 離散型隨機變量的均值與方差、正態(tài)分布隨堂檢測含解析》由會員分享,可在線閱讀,更多相關《安徽專用高考數(shù)學總復習 第九章第8課時 離散型隨機變量的均值與方差、正態(tài)分布隨堂檢測含解析(1頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、
第九章第8課時 離散型隨機變量的均值與方差、正態(tài)分布 隨堂檢測(含解析)
1.(2011高考大綱全國卷)根據(jù)以往統(tǒng)計資料,某地車主購買甲種保險的概率為0.5,購買乙種保險但不購買甲種保險的概率為0.3.設各車主購買保險相互獨立.
(1)求該地1位車主至少購買甲、乙兩種保險中的1種的概率;
(2)X表示該地的100位車主中,甲、乙兩種保險都不購買的車主數(shù),求X的期望.
解:設A表示事件:該地的1位車主購買甲種保險;
B表示事件:該地的1位車主購買乙種保險但不購買甲種保險;
C表示事件:該地的1位車主至少購買甲、乙兩種保險中的1種;
D表示事件:該地的1位車主甲、乙兩種保
2、險都不購買.
(1)P(A)=0.5,P(B)=0.3,C=A+B,
P(C)=P(A+B)=P(A)+P(B)=0.8.
(2)D=,P(D)=1-P(C)=1-0.8=0.2,
X~B(100,0.2),即X服從二項分布,
所以期望EX=1000.2=20.
2.已知5只動物只有1只患有某種疾病,需要通過化驗血液來確定患病的動物.血液化驗結果呈陽性的即為患病動物,呈陰性的即為沒患病動物.下面是兩種化驗方案:
方案甲:逐個化驗,直到能確定患病動物為止.
方案乙:先任取3只,將它們的血液混在一起化驗,若結果呈陽性,則表明患病動物是這3只中的1只,然后再逐個化驗,直到確定患病動物
3、為止;若結果呈陰性,則在另外2只中任取1只化驗.
(1)求依方案乙所需化驗次數(shù)恰好為2的概率;
(2)試比較兩種方案,哪種方案化驗次數(shù)的期望值較?。?
解:(1)依方案乙化驗2次化驗出結果,有兩種可能:
①先化驗3只,結果為陽性,再從中逐個化驗時,恰好1次驗中,此時概率為=.
②先化驗3只,結果為陰性,再從其他2只中任取1只化驗(無論第2次驗中沒有,均在第2次結束),則=.
故依方案乙所需化驗次數(shù)為2的概率為+=.
(2)設方案甲化驗的次數(shù)為η,則
P(η=1)=,P(η=2)==,
P(η=3)==,
P(η=4)==,
故Eη=1+2+3+4=.
設方案乙化驗的次數(shù)為ξ,則
P(ξ=2)=,P(ξ=3)==,
故Eξ=2+3=.
故Eη>Eξ,即方案乙化驗次數(shù)的期望值較小.
1