2010-2011學(xué)年高中數(shù)學(xué) 各章知識(shí)點(diǎn)總結(jié) 新人教A版必修1(高一)
《2010-2011學(xué)年高中數(shù)學(xué) 各章知識(shí)點(diǎn)總結(jié) 新人教A版必修1(高一)》由會(huì)員分享,可在線閱讀,更多相關(guān)《2010-2011學(xué)年高中數(shù)學(xué) 各章知識(shí)點(diǎn)總結(jié) 新人教A版必修1(高一)(10頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、2010-2011學(xué)年高一數(shù)學(xué)必修1各章知識(shí)點(diǎn)總結(jié) 第一章 集合與函數(shù)概念 集合的中元素的三個(gè)特性:確定性、互異性、無(wú)序性 集合的表示:{ … } 如:{太平洋,大西洋,印度洋,北冰洋} (1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5} (2) 集合的表示方法: u 注意:常用數(shù)集及其記法: 非負(fù)整數(shù)集(即自然數(shù)集) 記作:N 正整數(shù)集 N*或 N+ 整數(shù)集Z 有理數(shù)集Q 實(shí)數(shù)集R 列舉法:{a,b,c……} 描述法:將集合中的元素的公共屬性描述出來(lái),寫(xiě)在大括號(hào)內(nèi)表示集合的方法。{xR| x-3>2} ,{x| x-3>2} 語(yǔ)言
2、描述法:例:{不是直角三角形的三角形} 集合的分類: (1) 有限集 含有有限個(gè)元素的集合 (2) 無(wú)限集 含有無(wú)限個(gè)元素的集合 (3) 空集 不含任何元素的集合 例:{x|x2=-5} 集合間的基本關(guān)系 1.“包含”關(guān)系—子集 注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,記作AB或BA 2.“相等”關(guān)系:A=B (5≥5,且5≤5,則5=5) ① 任何一個(gè)集合是它本身的子集。AA ②真子集:如果AB,且A B那就說(shuō)集合A是集合B的真子集,記作AB(或BA) ③如果 AB, B
3、C ,那么 AC ④ 如果AB 同時(shí) BA 那么A=B 3. 不含任何元素的集合叫做空集,記為Φ 規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。 u 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集 集合的運(yùn)算 運(yùn)算類型 交 集 并 集 補(bǔ) 集 定 義 由所有屬于A且屬于B的元素組成的集合,叫A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}. 由所有屬于集合A或?qū)儆诩螧的元素組成的集合,叫A,B的并集.記作:AB(讀作‘A并B’),即AB ={x|xA,或xB}). 設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S
4、中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集) S A 記作,即 CSA= 韋 恩 圖 示 S A 性 質(zhì) AA=A AΦ=Φ AB=BA AA=A AΦ=A AB=BA (CuA) (CuB)= Cu (AB) (CuA) (CuB)= Cu(AB) A(CuA)=U A(CuA)= Φ. 例題: 1.下列四組對(duì)象,能構(gòu)成集合的是 ( ) A某班所有高個(gè)子的學(xué)生 B著名的藝術(shù)家 C一切很大的書(shū) D 倒數(shù)等于它自身
5、的實(shí)數(shù) 2.集合{a,b,c }的真子集共有 個(gè) 3.若集合M={y|y=x2-2x+1,xR},N={x|x≥0},則M與N的關(guān)系是 . 4.設(shè)集合A=,B=,若AB,則的取值范圍是 5.50名學(xué)生做的物理、化學(xué)兩種實(shí)驗(yàn),已知物理實(shí)驗(yàn)做得正確得有40人,化學(xué)實(shí)驗(yàn)做得正確得有31人, 兩種實(shí)驗(yàn)都做錯(cuò)得有4人,則這兩種實(shí)驗(yàn)都做對(duì)的有 人。 6. 用描述法表示圖中陰影部分的點(diǎn)(含邊界上的點(diǎn))組成的集合M= . 7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x
6、| x2-mx+m2-19=0}, 若B∩C≠Φ,A∩C=Φ,求m的值 函數(shù)的概念:設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù).記作: y=f(x),x∈A.其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域;與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)| x∈A }叫做函數(shù)的值域. 注意: 定義域:能使函數(shù)式有意義的實(shí)數(shù)x的集合稱為函數(shù)的定義域。 求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是: (1)分式的分母不等于零; (2)偶次方根的被開(kāi)
7、方數(shù)不小于零; (3)對(duì)數(shù)式的真數(shù)必須大于零; (4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1. (5)如果函數(shù)是由一些基本函數(shù)通過(guò)四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的x的值組成的集合. (6)指數(shù)為零底不可以等于零, (7)實(shí)際問(wèn)題中的函數(shù)的定義域還要保證實(shí)際問(wèn)題有意義. u 相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無(wú)關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備) 值域 : 先考慮其定義域 (1)觀察法 (2)配方法(3)代換法 函數(shù)圖象知識(shí)歸納 (1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(x) , (x∈A)中的x為橫坐標(biāo)
8、,函數(shù)值y為縱坐標(biāo)的點(diǎn)P(x,y)的集合C,叫做函數(shù) y=f(x),(x ∈A)的圖象.C上每一點(diǎn)的坐標(biāo)(x,y)均滿足函數(shù)關(guān)系y=f(x),反過(guò)來(lái),以滿足y=f(x)的每一組有序?qū)崝?shù)對(duì)x、y為坐標(biāo)的點(diǎn)(x,y),均在C上 . 常用變換方法有三種 1) 平移變換 2) 伸縮變換 3) 對(duì)稱變換 映射 一般地,設(shè)A、B是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合A中的任意一個(gè)元素x,在集合B中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:AB為從集合A到集合B的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):A(原象)B(象)” 對(duì)于映射f:A→B來(lái)說(shuō),則應(yīng)滿足: (1)集合A中
9、的每一個(gè)元素,在集合B中都有象,并且象是唯一的; (2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè); (3)不要求集合B中的每一個(gè)元素在集合A中都有原象。 分段函數(shù) (1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。 (2)各部分的自變量的取值情況. (3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集. 補(bǔ)充:復(fù)合函數(shù) 如果y=f(u)(u∈M),u=g(x)(x∈A),則 y=f[g(x)]=F(x)(x∈A) 稱為f、g的復(fù)合函數(shù)。 函數(shù)的性質(zhì) 1.函數(shù)的單調(diào)性(局部性質(zhì)) (1)增函數(shù) 設(shè)函數(shù)y=f(x)的定義域?yàn)镮,如果
10、對(duì)定義域I內(nèi)的某個(gè)區(qū)間D內(nèi)的任意兩個(gè)自變量x1,x2,當(dāng)x1 11、單調(diào)區(qū)間與單調(diào)性的判定方法
(A) 定義法:
任取x1,x2∈D,且x1 12、函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x),那么f(x)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對(duì)于函數(shù)f(x)的定義域內(nèi)的任意一個(gè)x,都有f(-x)=—f(x),那么f(x)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.
利用定義判斷函數(shù)奇偶性的步驟:
首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;
確定f(-x)與f(x)的關(guān)系;
作出相應(yīng)結(jié)論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數(shù);若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x 13、)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)由 f(-x)f(x)=0或f(x)/f(-x)=1來(lái)判定; (3)利用定理,或借助函數(shù)的圖象判定 .
9、函數(shù)的解析表達(dá)式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1) 湊配法
2) 待定系數(shù)法
3) 換元法
4) 消參法
10.函數(shù)最大(?。┲担ǘx見(jiàn)課本p36頁(yè))
利用二次 14、函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(?。┲?
利用圖象求函數(shù)的最大(小)值
利用函數(shù)單調(diào)性的判斷函數(shù)的最大(?。┲担?
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(x)在x=b處有最大值f(b);
如果函數(shù)y=f(x)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(x)在x=b處有最小值f(b);
例題:
1.求下列函數(shù)的定義域
⑴ ⑵
2.設(shè)函數(shù)的定義域?yàn)椋瑒t函數(shù)的定義域?yàn)開(kāi) _
3.若函數(shù)的定義域?yàn)?,則函數(shù)的定義域是
4.函數(shù) ,若,則= 15、
5.求下列函數(shù)的值域:
⑴ ⑵
(3) (4)
6.已知函數(shù),求函數(shù),的解析式
7.已知函數(shù)滿足,則= 。
8.設(shè)是R上的奇函數(shù),且當(dāng)時(shí),,則當(dāng)時(shí)=
在R上的解析式為
9.求下列函數(shù)的單調(diào)區(qū)間:
⑴ ⑵ ⑶
10.判斷函數(shù)的單調(diào)性并證明你的結(jié)論.
11.設(shè)函數(shù)判斷它的奇偶性并且求證:.
第二章 基本初等函數(shù)
指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果,那么叫做的次方根,其中>1,且∈*.
u 負(fù)數(shù)沒(méi)有偶次 16、方根;0的任何次方根都是0,記作。
當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),
分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
,
u 0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒(méi)有意義
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(1) ;
(2) ;
(3) .
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù),其中x是自變量,函數(shù)的定義域?yàn)镽.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a>1
0
17、偶函數(shù)
函數(shù)圖象都過(guò)定點(diǎn)(0,1)
函數(shù)圖象都過(guò)定點(diǎn)(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上,值域是或;
(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);
(3)對(duì)于指數(shù)函數(shù),總有;
對(duì)數(shù)函數(shù)
(一)對(duì)數(shù)
1.對(duì)數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:(— 底數(shù),— 真數(shù),— 對(duì)數(shù)式)
說(shuō)明: 注意底數(shù)的限制,且;
;
注意對(duì)數(shù)的書(shū)寫(xiě)格式.
兩個(gè)重要對(duì)數(shù):
常用對(duì)數(shù):以10為底的對(duì)數(shù);
自然對(duì)數(shù):以無(wú)理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).
u 指數(shù)式與對(duì)數(shù)式的互化
冪值 真數(shù)
18、
= N= b
底數(shù)
指數(shù) 對(duì)數(shù)
對(duì)數(shù)的運(yùn)算性質(zhì)
如果,且,,,那么:
+
-;
.
注意:換底公式
(,且;,且;).
利用換底公式推導(dǎo)下面的結(jié)論
(1);(2).
對(duì)數(shù)函數(shù)
1、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).
注意: 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如:, 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).
對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.
2、對(duì)數(shù)函數(shù)的性質(zhì)
- 溫馨提示:
1: 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國(guó)人民警察節(jié)(筑牢忠誠(chéng)警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭(zhēng)當(dāng)公安隊(duì)伍鐵軍
- XX國(guó)企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國(guó)青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書(shū)記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長(zhǎng)會(huì)長(zhǎng)長(zhǎng)的路慢慢地走