欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

構(gòu)造函數(shù)法解選填壓軸題(共8頁)

上傳人:4**** 文檔編號:54416355 上傳時間:2022-02-14 格式:DOCX 頁數(shù):8 大?。?86.01KB
收藏 版權(quán)申訴 舉報 下載
構(gòu)造函數(shù)法解選填壓軸題(共8頁)_第1頁
第1頁 / 共8頁
構(gòu)造函數(shù)法解選填壓軸題(共8頁)_第2頁
第2頁 / 共8頁
構(gòu)造函數(shù)法解選填壓軸題(共8頁)_第3頁
第3頁 / 共8頁

下載文檔到電腦,查找使用更方便

20 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《構(gòu)造函數(shù)法解選填壓軸題(共8頁)》由會員分享,可在線閱讀,更多相關(guān)《構(gòu)造函數(shù)法解選填壓軸題(共8頁)(8頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、精選優(yōu)質(zhì)文檔-----傾情為你奉上 微專題:構(gòu)造函數(shù)法解選填壓軸題 高考中要取得高分,關(guān)鍵在于選準選好的解題方法,才能省時省力又有效果。近幾年各地高考數(shù)學試卷中,許多方面尤其涉及函數(shù)題目,采用構(gòu)造函數(shù)法解答是一個不錯的選擇。所謂構(gòu)造函數(shù)法是指通過一定方式,設(shè)計并構(gòu)造一個與有待解答問題相關(guān)函數(shù),并對其進行觀察分析,借助函數(shù)本身性質(zhì)如單調(diào)性或利用運算結(jié)果,解決原問題方法,簡而言之就是構(gòu)造函數(shù)解答問題。怎樣合理的構(gòu)造函數(shù)就是問題的關(guān)鍵,這里我們來一起探討一下這方面問題。 幾種導數(shù)的常見構(gòu)造: 1.對于,構(gòu)造 若遇到,則可構(gòu) 2.對于,構(gòu)造 3.對于,構(gòu)造 4.對于 [或

2、],構(gòu)造 5.對于,構(gòu)造 6.對于,構(gòu)造 一、構(gòu)造函數(shù)法比較大小 例1.已知函數(shù)的圖象關(guān)于y軸對稱,且當成立,,,,則的大小關(guān)系是 ( ) 【解析】因為函數(shù)關(guān)于軸對稱,所以函數(shù)為奇函數(shù).因為, 所以當時,,函數(shù)單調(diào)遞減, 當時,函數(shù)單調(diào)遞減. 因為,,,所以,所以,選D. 變式: 已知定義域為的奇函數(shù)的導函數(shù)為,當時,, 若,則下列關(guān)于的大小關(guān)系正確的是( D ) 例2.已知為上的可導函數(shù),且,均有,則有 A., B., C., D., 【解析】構(gòu)造函數(shù)則, 因為均有并且

3、,所以,故函數(shù)在R上單調(diào)遞減, 所以,即 也就是,故選D. 變式: 已知函數(shù)為定義在上的可導函數(shù),且對于任意恒成立,為自然對數(shù)的底數(shù),則( C ) 二、構(gòu)造函數(shù)法解恒成立問題 例1.若函數(shù)y=在R上可導且滿足不等式恒成立,對任意正數(shù)、,若,則必有( ) A.    B. C.   D. 【解析】由已知 ∴構(gòu)造函數(shù) , 則, 從而在R上為增函數(shù)。 ∴ 即,故選C。 例2.已知是定義在(0,+∞)上的非負可導函數(shù),且滿足≤0,對任意正數(shù)、,若,則必有( ) A.    B. C.  

4、 D. 【解析】,,故在(0,+∞)上是減函數(shù), 由,有,即 。故選A。 變式1.設(shè)是上的可導函數(shù),分別為的導函數(shù),且滿足,則當時,有( C ) 變式2. 設(shè)函數(shù) 時,有( C ) A. B. C. D. 例3.設(shè)函數(shù)在R上的導函數(shù)為,且,下面不等式恒成立的是( ) A.    B. C.   D. 【解析】由已知,首先令得,排除B,D. 令,則, ① 當時,有, 所以函數(shù)單調(diào)遞增,所以當時, ,從而. ② 當時,有, 所以函數(shù)單調(diào)遞減,所以當時, ,從而. 綜上.故選A. 練習. 已知函數(shù)是R上的

5、可導函數(shù),當時,有,則函數(shù)的零點個數(shù)是( B ) A.0 B.1 C. 2 D.3 【解析】由,得,構(gòu)造函數(shù), 則 ,∵當時,有,∴當時, 即當時,,此時函數(shù)單調(diào)遞增,此時, 當時,,此時函數(shù)單調(diào)遞減,此時, 作出函數(shù)和函數(shù)的圖象,(直線只代表單調(diào)性和取值范圍),由圖象可知函數(shù)的零點個數(shù)為1個.故選B. 三、構(gòu)造函數(shù)法解不等式 例1.函數(shù)f(x)的定義域為R,f(-1)=2,對任意x∈R,,則f(x)>2x+4的解集為(  ) A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+

6、∞) 【解析】構(gòu)造函數(shù)G(x)=f(x)-2x-4,所以,由于對任意x∈R,, 所以>0恒成立,所以G(x)=f(x)-2x-4是R上的增函數(shù), 又由于G(-1)=f(-1)-2×(-1)-4=0,所以G(x)=f(x)-2x-4>0, 即f(x)>2x+4的解集為(-1,+∞),故選B. 變式1. 已知函數(shù)滿足,且,則的解集為( ) A. B. C. D. 【解析】構(gòu)造新函數(shù), 則, ,對任意,有,即函數(shù)在R上單調(diào)遞減, 所以的解集為,即的解集為,選D. 變式2.定義在上的函數(shù),其導函數(shù)滿足,且,則關(guān)于的不等式的解集為

7、 變式3.已知函數(shù)為定義在上的可導函數(shù),且對于任意恒成立,且,則的解集為 變式4.函數(shù)的定義域是,,對任意,,則不等式的解集為( A ) A. B. C. D. 例2 設(shè)是定義在R上的奇函數(shù),且,當時,有恒成立,則不等式的解集是 解:因為當x>0時,有恒成立,即[]′<0恒成立, 所以在內(nèi)單調(diào)遞減. 因為,所以在(0,2)內(nèi)恒有;在內(nèi)恒有. 又因為是定義在R上的奇函數(shù), 所以在內(nèi)恒有;在內(nèi)恒有. 又不等式的解集,即不等式的解集.所以答案為∪(0,2). 變式1. 已知定義在上的可

8、導函數(shù),其導函數(shù)為,且有,則不等式 的解集為( C ) A B. C. D. 變式2.函數(shù)的定義域為R,,對任意x∈R,都有成立,則不等式的解集為( C ) A. B. C. D. 變式3. 設(shè)是定義在上的函數(shù),其導函數(shù)為,若,,則不等式的解集為( D ) A. B. C. D. 變式4.函數(shù)是定義在上的偶函數(shù),,且時,,則不等式的解集是__________(提示:構(gòu)造的為奇函數(shù),) 例4設(shè)是上的可導函數(shù),,,則不等式的解集為

9、變式1.設(shè)分別是定義在上的奇函數(shù)、偶函數(shù),當時,,,則不等式的解集為 . 變式2.已知上的函數(shù)滿足,且,若,則關(guān)于的不等式的解集為 . 變式3. 設(shè)奇函數(shù)定義在上,其導函數(shù)為,且,當時,,則關(guān)于的不等式的解集為_. (提示:構(gòu)造的為偶函數(shù)) 四、構(gòu)造函數(shù)法求值 例1.設(shè)是上的可導函數(shù),且,,.則的值為 . 提示:由得,所以,即, 設(shè)函數(shù),則此時有, 故, 變式.已知的導函數(shù)為,當時,,且,若存在,使,則的值為 1 .(提示:構(gòu)造) 例2.已知定義在上的函數(shù)滿足,且, ,若有窮數(shù)列的前項和等于,則等于 5

10、 . 解:∵ ,∴, 即函數(shù)單調(diào)遞減,∴0<a<1.又, 即 ∴解得或a=2(舍去). ∴,即, 數(shù)列是首項為,公比的等比數(shù)列, ∴,由,解得n=5。 變式1. 已知,都是定義在R上的函數(shù),,,且 (,且)。,若數(shù)列的前項和大于62,則的最小值為( A ) A 8 B 7 C 6 D 5 變式2.已知、都是定義在R上的函數(shù),,,.在區(qū)間上隨機取一個數(shù), 的值介于4到8之間的概率是( ?。?   A. B. C. D. 解:由題意,,∴[ ]'<0, ∴函數(shù)在R上是減函數(shù)

11、,∵,∴0<a<1 ∵. ∴∴ ∵的值介于4到8,∴ ∴在區(qū)間上隨機取一個數(shù)x,的值介于4到8之間的概率是,故選A. 【模型總結(jié)】 關(guān)系式為“加”型 (1) 構(gòu)造 (2) 構(gòu)造 (3) 構(gòu)造 (注意對的符號進行討論) 關(guān)系式為“減”型 (1) 構(gòu)造 (2) 構(gòu)造 (3) 構(gòu)造 (注意對的符號進行討論) 構(gòu)造函數(shù)法是在求解某些數(shù)學問題時,根據(jù)問題的條件或目標,構(gòu)想組合一種新的函數(shù)關(guān)系,使問題在新函數(shù)下轉(zhuǎn)化并利用函數(shù)的有關(guān)性質(zhì)解決原問題是一種行之有效的解題手段。構(gòu)造函數(shù)法解題是一種創(chuàng)造性思維過程,具有較大的靈活性和技巧性。在運用過程中,應(yīng)有目的、有意識地進行構(gòu)造,始終“盯住”要解決的目標。 專心---專注---專業(yè)

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!