2019高考數(shù)學“一本”培養(yǎng)專題突破 第2部分 專題3 概率與統(tǒng)計 第5講 概率與統(tǒng)計學案 文.doc
《2019高考數(shù)學“一本”培養(yǎng)專題突破 第2部分 專題3 概率與統(tǒng)計 第5講 概率與統(tǒng)計學案 文.doc》由會員分享,可在線閱讀,更多相關《2019高考數(shù)學“一本”培養(yǎng)專題突破 第2部分 專題3 概率與統(tǒng)計 第5講 概率與統(tǒng)計學案 文.doc(23頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第5講 概率與統(tǒng)計 高考統(tǒng)計定方向 熱點題型 真題統(tǒng)計 命題規(guī)律 題型1:抽樣方法、統(tǒng)計圖表的判讀及用樣本估計總體 2018全國卷ⅠT3;2018全國卷ⅢT14;2017全國卷ⅠT19 2016全國卷ⅠT19;2014全國卷ⅠT18 1.高考對這部分內(nèi)容的考查是“一小一大”或“一大”. 2.統(tǒng)計中的“一小”,是高考創(chuàng)新的基地,與實際生活密切相關,令人耳目一新. 3.解答題多出現(xiàn)在18或19題的位置,重點考查用頻率估計概率、頻率分布直方圖、折線圖、莖葉圖、回歸分析和獨立性檢驗. 題型2:變量的相關性(回歸分析)、獨立性檢驗 2018全國卷ⅡT18;2018全國卷ⅢT18;2017全國卷ⅡT19 2016全國卷ⅢT18;2015全國卷ⅠT19 題型3:概率與統(tǒng)計的綜合問題 2018全國卷ⅠT19;2017全國卷ⅢT18;2016全國卷ⅡT18 2015全國卷ⅡT18;2014全國卷ⅡT19 題型1 抽樣方法、統(tǒng)計圖表的判讀及用樣本估計總體 ■核心知識儲備 1.頻率分布直方圖中橫坐標表示組距,縱坐標表示,頻率=組距. 2.頻率分布直方圖中各小長方形的面積之和為1. 3.利用頻率分布直方圖求眾數(shù)、中位數(shù)與平均數(shù),在頻率分布直方圖中: (1)最高的小長方形底邊中點的橫坐標即是眾數(shù); (2)中位數(shù)左邊和右邊的小長方形的面積和均為0.5; (3)平均數(shù)是頻率分布直方圖的“重心”,等于頻率分布直方圖中每個小長方形的面積乘以小長方形底邊中點的橫坐標之和. 4.樣本的數(shù)字特征 (1)樣本平均數(shù)=(x1+x2+…+xn). (2)樣本方差s2=[(x1-)2+(x2-)2+…+(xn-)2]=(x+x+…+x)-2. (3)樣本標準差s= =. (4)若x1,x2,x3,…xn的平均數(shù)為,方差為σ2,則ax1+b;ax2+b;ax3+b…axn+b的平均數(shù)為a+b,方差為a2σ2. ■高考考法示例 【例1】 (1)為比較甲、乙兩地某月14時的氣溫情況,隨機選取該月中的5天,將這5天中14時的氣溫數(shù)據(jù)(單位:℃)制成如圖231所示的莖葉圖.考慮以下結論: 圖231 ①甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫; ②甲地該月14時的平均氣溫高于乙地該月14時的平均氣溫; ③甲地該月14時的氣溫的標準差小于乙地該月14時的氣溫的標準差; ④甲地該月14時的氣溫的標準差大于乙地該月14時的氣溫的標準差. 其中根據(jù)莖葉圖能得到的統(tǒng)計結論的編號為( ) A.①③ B.①④ C.②③ D.②④ (2)(2018全國卷Ⅲ)某公司有大量客戶,且不同年齡段客戶對其服務的評價有較大差異.為了解客戶的評價,該公司準備進行抽樣調(diào)查,可供選擇的抽樣方法有簡單隨機抽樣、分層抽樣和系統(tǒng)抽樣,則最合適的抽樣方法是________. (3)(2018合肥模擬)某電子商務公司對10 000名網(wǎng)絡購物者2017年度的消費情況進行統(tǒng)計,發(fā)現(xiàn)消費金額(單位:萬元)都在區(qū)間[0.3,0.9]內(nèi),其頻率分布直方圖如圖232所示. 圖232 ①直方圖中的a=________. ②在這些購物者中,消費金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為________. (1)B (2)分層抽樣 (3)①3 ②6 000 [(1)∵甲==29, 乙==30,∴甲<乙. 又s==, s==2, ∴s甲>s乙,故可判斷結論①④正確. (2)因為不同年齡段的客戶對公司的服務評價有較大差異,所以需按年齡進行分層抽樣,才能了解到不同年齡段的客戶對公司服務的客觀評價. (3)由0.11.5+0.12.5+0.1a+0.12.0+0.10.8+0.10.2=1,解得a=3. 區(qū)間[0.3,0.5)內(nèi)的頻率為0.11.5+0.12.5=0.4,故[0.5,0.9]內(nèi)的頻率為1-0.4=0.6. 因此,消費金額在區(qū)間[0.5,0.9]內(nèi)的購物者的人數(shù)為0.610 000=6 000.] [方法歸納] 與頻率分布直方圖有關問題的常見類型及解題策略 (1)已知頻率分布直方圖中的部分數(shù)據(jù),求其他數(shù)據(jù).可根據(jù)頻率分布直方圖中的數(shù)據(jù)求出樣本與整體的關系,利用頻率和等于1就可以求出其他數(shù)據(jù). (2)已知頻率分布直方圖,求某個范圍內(nèi)的數(shù)據(jù),可利用圖形及結合某范圍求解. ■對點即時訓練 1.(2017全國卷Ⅲ)某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務質(zhì)量,收集并整理了2014年1月至2016年12月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖. 圖233 根據(jù)該折線圖,下列結論錯誤的是( ) A.月接待游客量逐月增加 B.年接待游客量逐年增加 C.各年的月接待游客量高峰期大致在7,8月 D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn) A [對于選項A,由圖易知月接待游客量每年7,8月份明顯高于12月份,故A錯; 對于選項B,觀察折線圖的變化趨勢可知年接待游客量逐年增加,故B正確; 對于選項C,D,由圖可知顯然正確. 故選A.] 2.空氣質(zhì)量指數(shù)(Air Quality Index,簡稱AQI)是定量描述空氣質(zhì)量狀況的無量綱指數(shù).空氣質(zhì)量按照AQI大小分為六級:0~50為優(yōu);51~100為良;101~150為輕度污染;151~200為中度污染;201~300為重度污染;大于300為嚴重污染.一環(huán)保人士記錄去年某地某月10天的AQI的莖葉圖如圖234.利用該樣本估計該地本月空氣質(zhì)量優(yōu)良(AQI≤100)的天數(shù)(按這個月總共30天計算)為 ( ) 圖234 A.15 B.18 C.20 D.24 B [從莖葉圖中可以發(fā)現(xiàn)該樣本中空氣質(zhì)量優(yōu)的天數(shù)為2,空氣質(zhì)量良的天數(shù)為4,故該樣本中空氣質(zhì)量優(yōu)良的頻率為=,估計該地本月空氣質(zhì)量優(yōu)良的頻率為,從而估計該地本月空氣質(zhì)量優(yōu)良的天數(shù)為30=18.選B.] 3.(2018昆明模擬)工廠生產(chǎn)的A、B、C三種不同型號的產(chǎn)品數(shù)量之比依次為2∶3∶5,為研究這三種產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從該工廠生產(chǎn)的A、B、C三種產(chǎn)品中抽出樣本容量為n的樣本,若樣本中A型產(chǎn)品有16件,則n的值為________. 80 [由已知得n=16,解得n=80.] 題型2 變量的相關性(回歸分析)、獨立性檢驗 ■核心知識儲備 1.變量的相關性 (1)正相關:在散點圖中,點散布在從左下角到右上角的區(qū)域. (2)負相關:在散點圖中,點散布在從左上角到右下角的區(qū)域. (3)相關系數(shù)r:當r>0時,兩變量正相關;當r<0時,兩變量負相關;當|r|≤1且|r|越接近于1,相關程度越高,當|r|≤1且|r|越接近于0,相關程度越低. 2.線性回歸方程 方程=x+稱為線性回歸方程,其中=,=,回歸直線恒過樣本點的中心(,). 3.獨立性檢驗的步驟 (1)根據(jù)實際問題的需要確定容許推斷“兩個分類變量有關系”犯錯誤概率的上界α,然后查臨界值表確定臨界值k0. (2)利用公式K2=計算隨機變量K2的觀測值k. (3)如果k≥k0,就推斷“X與Y有關系”,這種推斷犯錯誤的概率不超過α;否則,就認為在犯錯誤的概率不超過α的前提下不能推斷“X與Y有關系”,或者在樣本數(shù)據(jù)中沒有發(fā)現(xiàn)足夠證據(jù)支持結論“X與Y有關系”. ■高考考法示例 ?角度一 回歸分析 【例2-1】 (2015全國卷Ⅰ)某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費x(單位:千元)對年銷售量y(單位:t)和年利潤z(單位:千元)的影響.對近8年的年宣傳費xi和年銷售量yi(i=1,2,…,8)數(shù)據(jù)作了初步處理,得到下面的散點圖235及一些統(tǒng)計量的值. 圖235 (1)根據(jù)散點圖判斷,y=a+bx與y=c+d哪一個適宜作為年銷售量y關于年宣傳費x的回歸方程類型?(給出判斷即可,不必說明理由) (2)根據(jù)(1)的判斷結果及表中數(shù)據(jù),建立y關于x的回歸方程; (3)已知這種產(chǎn)品的年利潤z與x,y的關系為z=0.2y-x.根據(jù)(2)的結果回答下列問題: ①年宣傳費x=49時,年銷售量及年利潤的預報值是多少? ②年宣傳費x為何值時,年利潤的預報值最大? 附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線v=α+βu的斜率和截距的最小二乘估計分別為= [解] (1)由散點圖可以判斷,y=c+d適宜作為年銷售量y關于年宣傳費x的回歸方程類型. (2)令w=,先建立y關于w的線性回歸方程. 由于===68, =- =563-686.8=100.6, 所以y關于w的線性回歸方程為=100.6+68w, 因此y關于x的回歸方程為=100.6+68. (3)①由(2)知,當x=49時, 年銷售量y的預報值=100.6+68=576.6, 年利潤z的預報值=576.60.2-49=66.32. ②根據(jù)(2)的結果知,年利潤z的預報值 =0.2(100.6+68)-x=-x+13.6+20.12. 所以當==6.8,即x=46.24時,取得最大值. 故年宣傳費為46.24千元時,年利潤的預報值最大. ?角度二 獨立性檢驗 【例2-2】 (2018全國卷Ⅲ)某工廠為提高生產(chǎn)效率,開展技術創(chuàng)新活動,提出了完成某項生產(chǎn)任務的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務的工作時間(單位:min)繪制了如下莖葉圖236: 圖236 (1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說明理由; (2)求40名工人完成生產(chǎn)任務所需時間的中位數(shù)m,并將完成生產(chǎn)任務所需時間超過m和不超過m的工人數(shù)填入下面的列聯(lián)表: 超過m 不超過m 第一種生產(chǎn)方式 第二種生產(chǎn)方式 (3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認為兩種生產(chǎn)方式的效率有差異? 附:K2=, P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 [解] (1)第二種生產(chǎn)方式的效率更高. 理由如下: (ⅰ)由莖葉圖可知:用第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需時間至少80分鐘,用第二種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務所需時間至多79分鐘.因此第二種生產(chǎn)方式的效率更高. (ⅱ)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為85.5分鐘,用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間的中位數(shù)為73.5分鐘.因此第二種生產(chǎn)方式的效率更高. (ⅲ)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間高于80分鐘;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務平均所需時間低于80分鐘.因此第二種生產(chǎn)方式的效率更高. (ⅳ)由莖葉圖可知:用第一種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖8上的最多,關于莖8大致呈對稱分布;用第二種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布在莖7上的最多,關于莖7大致呈對稱分布.又用兩種生產(chǎn)方式的工人完成生產(chǎn)任務所需時間分布的區(qū)間相同,故可以認為用第二種生產(chǎn)方式完成生產(chǎn)任務所需的時間比用第一種生產(chǎn)方式完成生產(chǎn)任務所需的時間更少.因此第二種生產(chǎn)方式的效率更高. (以上給出了4種理由,答出其中任意一種或其他合理理由均可.) (2)由莖葉圖知m==80. 列聯(lián)表如下: 超過m 不超過m 第一種生產(chǎn)方式 15 5 第二種生產(chǎn)方式 5 15 (3)由于K2==10>6.635,所以有99%的把握認為兩種生產(chǎn)方式的效率有差異. [方法歸納] 求線性回歸方程的步驟: ■對點即時訓練 1.某品牌2019款汽車即將上市,為了對這款汽車進行合理定價,某公司在某市五家4S店分別進行了兩天試銷售,得到如下數(shù)據(jù): (1)分別以五家4S店的平均單價與平均銷量為散點,求出單價與銷量的回歸直線方程=x+; (2)在大量投入市場后,銷量與單價仍服從(1)中的關系,且該款汽車的成本為12萬元/輛,為使該款汽車獲得最大利潤,則該款汽車的單價約為多少萬元(保留一位小數(shù))? 附: [解] (1)五家4S店的平均單價和平均銷量分別為(18.3,83),(18.5,80),(18.7,74),(18.4,80),(18.6,78), ∴==18.5, ==79, ∴= ==-20. ∴=-=79-(-20)18.5=79+370=449, ∴=-20x+449. (2)設該款汽車的單價應為x萬元, 則利潤f(x)=(x-12)(-20x+449)=-20x2+689x-5 388, f′(x)=-40x+689,令-40x+689=0,解得x≈17.2, 故當x≈17.2時,f(x)取得最大值. ∴要使該款汽車獲得最大利潤,該款汽車的單價約為17.2萬元. 2.(2018鄭州模擬)人機大戰(zhàn)也引發(fā)全民對圍棋的關注,某學校社團為調(diào)查學生學習圍棋的情況,隨機抽取了100名學生進行調(diào)查.根據(jù)調(diào)查結果繪制的學生日均學習圍棋時間的頻率分布直方圖如圖237所示,將日均學習圍棋時間不低于40分鐘的學生稱為“圍棋迷”. 圖237 根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否有95%的把握認為“圍棋迷”與性別有關? 非圍棋迷 圍棋迷 合計 男 女 10 55 合計 附:K2=,其中n=a+b+c+d. P(K2≥k0) 0.05 0.01 k0 3.841 6.635 [解] 由頻率分布直方圖可知,在抽取的100人中,“圍棋迷”有25人,從而22列聯(lián)表如下: 非圍棋迷 圍棋迷 合計 男 30 15 45 女 45 10 55 合計 75 25 100 將22列聯(lián)表中的數(shù)據(jù)代入公式計算,得 K2= = =≈3.030, 因為3.030<3.841,所以沒有95%的把握認為“圍棋迷”與性別有關. 題型3 概率與統(tǒng)計的綜合問題 概率考點是近幾年高考的熱點之一,主要考查隨機事件的概率、古典概型、幾何概型等知識,近幾年高考對概率的考查由單一型向知識交匯型轉(zhuǎn)化,且多為古典概型與莖葉圖、頻率分布直方圖、回歸分析、獨立性檢驗等交匯考查. ■高考考法示例 【例3】 (2016全國卷Ⅰ)某公司計劃購買1臺機器,該種機器使用三年后即被淘汰.機器有一易損零件,在購進機器時,可以額外購買這種零件作為備件,每個200元.在機器使用期間,如果備件不足再購買,則每個500元.現(xiàn)需決策在購買機器時應同時購買幾個易損零件,為此搜集并整理了100臺這種機器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖: 圖238 記x表示1臺機器在三年使用期內(nèi)需更換的易損零件數(shù),y表示1臺機器在購買易損零件上所需的費用(單位:元),n表示購機的同時購買的易損零件數(shù). (1)若n=19,求y與x的函數(shù)解析式; (2)若要求“需更換的易損零件數(shù)不大于n”的頻率不小于0.5,求n的最小值; (3)假設這100臺機器在購機的同時每臺都購買19個易損零件,或每臺都購買20個易損零件,分別計算這100臺機器在購買易損零件上所需費用的平均數(shù),以此作為決策依據(jù),購買1臺機器的同時應購買19個還是20個易損零件? [思路點撥] (1)根據(jù)題意寫出分段函數(shù)的解析式. (2)→ (3)→→ [解] (1)當x≤19時,y=3 800; 當x>19時,y=3 800+500(x-19)=500x-5 700, 所以y與x的函數(shù)解析式為 y=(x∈N). (2)由柱狀圖知,需更換的零件數(shù)不大于18的頻率為0.46,不大于19的頻率為0.7,故n的最小值為19. (3)若每臺機器在購機同時都購買19個易損零件,則這100臺機器中有70臺在購買易損零件上的費用為3 800,20臺的費用為4 300,10臺的費用為4 800,因此這100臺機器在購買易損零件上所需費用的平均數(shù)為(3 80070+4 30020+4 80010)=4 000. 若每臺機器在購機同時都購買20個易損零件,則這100臺機器中有90臺在購買易損零件上的費用為4 000,10臺的費用為4 500,因此這100臺機器在購買易損零件上所需費用的平均數(shù)為(4 00090+4 50010)=4 050. 比較兩個平均數(shù)可知,購買1臺機器的同時應購買19個易損零件. [方法歸納] 以實際問題為背景,以統(tǒng)計圖表為載體考查抽樣方法、數(shù)字特征、概率、分布列以及獨立性檢驗等知識是高考??键c.處理關鍵是仔細閱讀題目,準確獲取信息,成功地將應用問題轉(zhuǎn)化為統(tǒng)計概率問題求解. (教師備選) (2018長春模擬)為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖239(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米. 圖239 (1)列出22列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關? (2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進行雜交試驗,則選取的植株均為矮莖的概率是多少? 附: P(K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005 0.001 k0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 [解] (1)根據(jù)統(tǒng)計數(shù)據(jù)得22列聯(lián)表如下: 抗倒伏 易倒伏 總計 矮莖 15 4 19 高莖 10 16 26 總計 25 20 45 所以K2=≈7.287>6.635,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關. (2)按照分層抽樣的方法抽到的高莖玉米有2株,設為A,B,抽到的矮莖玉米有3株,設為a,b,c,從這5株玉米中取出2株的取法有AB,Aa,Ab,Ac,Ba,Bb,Bc,ab,ac,bc,共10種,其中均為矮莖的選取方法有ab,ac,bc,共3種,因此選取的植株均為矮莖的概率是. ■對點即時訓練 (2018湘中名校聯(lián)考)某大學生在開學季準備銷售一種文具盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元.根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖2310所示,該同學為這個開學季購進了160盒該產(chǎn)品,以x(單位:盒,100≤x≤200)表示這個開學季內(nèi)的市場需求量,y(單位:元)表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤. 圖2310 (1)根據(jù)頻率分布直方圖估計這個開學季內(nèi)市場需求量x的眾數(shù)、平均數(shù)和中位數(shù); (2)將y表示為x的函數(shù); (3)根據(jù)頻率分布直方圖估計利潤y不少于4 800元的概率. [解] (1)由頻率分布直方圖知,這個開學季內(nèi)市場需求量x的眾數(shù)估計值是=150. 需求量為[100,120)的頻率為0.00520=0.1, 需求量為[120,140)的頻率為0.0120=0.2, 需求量為[140,160)的頻率為0.01520=0.3, 需求量為[160,180)的頻率為0.012 520=0.25, 需求量為[180,200]的頻率為0.007 520=0.15. 則平均數(shù)=1100.1+1300.2+1500.3+1700.25+1900.15=153. 根據(jù)頻率分布直方圖及中位數(shù)的概念,設這個開學季內(nèi)市場需求量x的中位數(shù)為140+a, 則(0.005 0+0.010 0)20+0.015 0a=(0.012 5+0.007 5)20+0.015 0(20-a), 解得a=. 所以中位數(shù)為140+=153. (2)因為每售出1盒該產(chǎn)品獲利潤50元,未售出的產(chǎn)品,每盒虧損30元, 所以當100≤x≤160時,y=50x-30(160-x)=80x-4 800, 當160- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019高考數(shù)學“一本”培養(yǎng)專題突破 第2部分 專題3 概率與統(tǒng)計 第5講 概率與統(tǒng)計學案 2019 高考 數(shù)學 培養(yǎng) 專題 突破 部分 概率 統(tǒng)計 統(tǒng)計學
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-5447664.html