《數(shù)學(xué) 第三章 指數(shù)函數(shù)和對(duì)數(shù)函數(shù) 5.1 對(duì)數(shù)函數(shù)的概念 5.2 對(duì)數(shù)函數(shù)y=log2x的圖像和性質(zhì) 北師大版必修1》由會(huì)員分享,可在線閱讀,更多相關(guān)《數(shù)學(xué) 第三章 指數(shù)函數(shù)和對(duì)數(shù)函數(shù) 5.1 對(duì)數(shù)函數(shù)的概念 5.2 對(duì)數(shù)函數(shù)y=log2x的圖像和性質(zhì) 北師大版必修1(35頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、5對(duì)數(shù)函數(shù)對(duì)數(shù)函數(shù)5.1對(duì)數(shù)函數(shù)的概念對(duì)數(shù)函數(shù)的概念5.2對(duì)數(shù)函數(shù)對(duì)數(shù)函數(shù)ylog2x的圖像和性質(zhì)的圖像和性質(zhì)學(xué)習(xí)目標(biāo)1.理解對(duì)數(shù)函數(shù)的概念以及對(duì)數(shù)函數(shù)與指數(shù)函數(shù)間的關(guān)系(重點(diǎn));2.了解指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù),并會(huì)求指數(shù)函數(shù)或?qū)?shù)函數(shù)的反函數(shù)(重、難點(diǎn));3.會(huì)畫具體函數(shù)的圖像(重點(diǎn))知識(shí)點(diǎn)一對(duì)數(shù)函數(shù)一般地,我們把函數(shù)ylogax(a0,a1)叫作對(duì)數(shù)函數(shù),a叫作對(duì)數(shù)函數(shù)的_,x是_,定義域是_ ,值域是_兩類特殊的對(duì)數(shù)函數(shù)常用對(duì)數(shù)函數(shù):ylg x,其底數(shù)為_自然對(duì)數(shù)函數(shù):yln x,其底數(shù)為無理數(shù)_底數(shù)真數(shù)(0,)R10e【預(yù)習(xí)評(píng)價(jià)】1下列函數(shù)是對(duì)數(shù)函數(shù)的是()Ayln x Byln
2、(x1)Cylogxe Dylogxx解析由對(duì)數(shù)函數(shù)的定義知yln x是對(duì)數(shù)函數(shù),其余三個(gè)均不符合對(duì)數(shù)函數(shù)的特征答案A2函數(shù)f(x)log2(x1)的定義域是_解析由題意知x10,即x1,故定義域?yàn)?1,)答案(1,)知識(shí)點(diǎn)二反函數(shù)指數(shù)函數(shù)yax(a0,a1)是對(duì)數(shù)函數(shù)_ 的反函數(shù);同時(shí)對(duì)數(shù)函數(shù)ylogax(a0,a1)也是_的反函數(shù),即同底的指數(shù)函數(shù)與對(duì)數(shù)函數(shù)互為反函數(shù)ylogax(a0,a1)指數(shù)函數(shù)yax(a0,a1)【預(yù)習(xí)評(píng)價(jià)】1你能把指數(shù)式y(tǒng)ax(a0,a1)化成對(duì)數(shù)式嗎?在這個(gè)對(duì)數(shù)式中,x是y的函數(shù)嗎?提示根據(jù)對(duì)數(shù)的定義,得xlogay(a0,a1)因?yàn)閥ax是單調(diào)函數(shù),每一個(gè)y都
3、有唯一確定的x與之對(duì)應(yīng),所以x是y的函數(shù)2函數(shù)yax的定義域和值域與ylogax的定義域和值域有什么關(guān)系?提示對(duì)數(shù)函數(shù)ylogax的定義域是指數(shù)函數(shù)yax的值域,對(duì)數(shù)函數(shù)ylogax的值域是指數(shù)函數(shù)yax的定義域知識(shí)點(diǎn)三函數(shù)ylog2x的圖像和性質(zhì)觀察函數(shù)ylog2x的圖像可得:圖像特征函數(shù)性質(zhì)過點(diǎn)_當(dāng)x1時(shí),_在y軸的右側(cè)定義域是_向上、向下無限延伸值域是_在直線x1右側(cè),圖像位于x軸上方;在直線x1左側(cè),圖像位于x軸下方若x1,則_;若0 x0y0,且a1);ylog2x1;y2log8x;ylogxa(x0,且x1);ylog5x解因?yàn)橹姓鏀?shù)是x2,而不是x,所以不是對(duì)數(shù)函數(shù);因?yàn)橹衴l
4、og2x1常數(shù)項(xiàng)為1,而非0,故不是對(duì)數(shù)函數(shù);因?yàn)橹衛(wèi)og8x前的系數(shù)是2,而不是1,所以不是對(duì)數(shù)函數(shù);因?yàn)橹械讛?shù)是自變量x,而非常數(shù)a,所以不是對(duì)數(shù)函數(shù)為對(duì)數(shù)函數(shù)題型一對(duì)數(shù)函數(shù)的定義答案C題型二與對(duì)數(shù)函數(shù)有關(guān)的函數(shù)定義域問題規(guī)律方法求函數(shù)定義域的三個(gè)步驟(1)列不等式(組):根據(jù)函數(shù)f(x)有意義列出x滿足的不等式(組)(2)解不等式(組):根據(jù)不等式(組)的解法步驟求出x滿足的范圍(3)結(jié)論:寫出函數(shù)的定義域提醒(1)通過建立不等關(guān)系求定義域時(shí),要注意解集為各不等關(guān)系解集的交集(2)當(dāng)對(duì)數(shù)型函數(shù)的底數(shù)含字母時(shí),在求定義域時(shí)要注意分類討論答案A規(guī)律方法(1)指數(shù)函數(shù)yax與對(duì)數(shù)函數(shù)yloga
5、x互為反函數(shù)(2)互為反函數(shù)的兩個(gè)函數(shù)的定義域、值域相反,并且反函數(shù)是相對(duì)而言的(3)互為反函數(shù)的兩個(gè)函數(shù)的圖像關(guān)于直線yx對(duì)稱【訓(xùn)練3】寫出下列函數(shù)的反函數(shù)(用x表示自變量,y表示函數(shù))【探究1】根據(jù)函數(shù)f(x)log2x的圖像和性質(zhì)求解以下問題:(1)若f(a)f(2),求a的取值范圍;(2)求ylog2(2x1)在x2,14上的最值解函數(shù)ylog2x的圖像如圖典例遷移題型四函數(shù)ylog2x的圖像與性質(zhì) 【探究3】作出函數(shù)y|log2(x1)|2的圖像,并說明其單調(diào)性解第一步:作出ylog2x的圖像如圖(1)所示第二步:將ylog2x的圖像沿x軸向左平移1個(gè)單位長(zhǎng)度,得ylog2(x1)的
6、圖像如圖(2)所示第三步:將ylog2(x1)的圖像在x軸下方的部分以x軸為對(duì)稱軸翻折到x軸的上方,得y|log2(x1)|的圖像如圖(3)所示第四步:將y|log2(x1)|的圖像沿y軸方向向上平移2個(gè)單位長(zhǎng)度,得y|log2(x1)|2的圖像如圖(4)所示(2)含有絕對(duì)值的函數(shù)的圖像變換是一種對(duì)稱變換一般地,yf(|xa|)的圖像是關(guān)于直線xa對(duì)稱的軸對(duì)稱圖形;函數(shù)y|f(x)|的圖像與yf(x)的圖像在x軸上方相同,在x軸下方關(guān)于x軸對(duì)稱(3)yf(x)的圖像與yf(x)的圖像關(guān)于y軸對(duì)稱,yf(x)的圖像與yf(x)的圖像關(guān)于x軸對(duì)稱課堂達(dá)標(biāo)答案A2函數(shù)ylog2x在1,2上的值域是()AR B(,1 C0,1 D0,)解析1x2,log21log2xlog22.即0y1答案C3函數(shù)yln x的反函數(shù)是_解析同底的對(duì)數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)答案yex答案11解與對(duì)數(shù)有關(guān)的問題,首先要保證在定義域范圍內(nèi)解題,即真數(shù)大于零,底數(shù)大于零且不等于1,函數(shù)定義域的結(jié)果一定要寫成集合或區(qū)間的形式2指數(shù)函數(shù)yax與對(duì)數(shù)函數(shù)ylogax互為反函數(shù),它們定義域與值域互反,圖像關(guān)于直線yx對(duì)稱3應(yīng)注意數(shù)形結(jié)合思想在解題中的應(yīng)用課堂小結(jié)