《高考物理二輪復(fù)習(xí)簡易通(新課標(biāo))word版訓(xùn)練:第4講 功能關(guān)系在力學(xué)中的應(yīng)用》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考物理二輪復(fù)習(xí)簡易通(新課標(biāo))word版訓(xùn)練:第4講 功能關(guān)系在力學(xué)中的應(yīng)用(10頁珍藏版)》請?jiān)谘b配圖網(wǎng)上搜索。
1、第4講 功能關(guān)系在力學(xué)中的應(yīng)用
(1~6題為單項(xiàng)選擇題,7~10題為多項(xiàng)選擇題)
1. 如圖2-4-19所示,質(zhì)量為m的物體在與水平方向成θ角的恒力F作用下以加速度a做勻加速直線運(yùn)動(dòng),已知物體和地面間的動(dòng)摩擦因數(shù)為μ,物體在地面上運(yùn)動(dòng)距離為x的過程中力F做的功為
( ).
圖2-4-19
A.μmgx B.
C. D.
解析 以物體為研究對象,豎直方向有Fsin θ+mg=FN,水平方向有Fcos θ-μFN=ma,聯(lián)立解得F=,在此過程中F做功W=Fxcos θ=,故正確選項(xiàng)為B.
答案 B
2.小明同學(xué)騎電動(dòng)自行車沿平直公路行駛,因電瓶
2、“沒電”,故改用腳蹬車勻速前行.設(shè)小明與車的總質(zhì)量為100 kg,騎行過程中所受阻力恒為車和人總重的0.02倍,g取10 m/s2.通過估算可知,小明騎此電動(dòng)車做功的平均功率最接近
( ).
A.10 W B.100 W C.300 W D.500 W
解析 由P=Fv可知,要求騎車人的功率,一要知道騎車人的動(dòng)力,二要知道騎車人的速度,前者由于自行車勻速行駛,由二力平衡的知識(shí)可知F=f=20 N,后者對于騎車人的速度我們應(yīng)該有一個(gè)估測,約為5 m/s,所以由P=Fv得,選項(xiàng)B正確.
答案 B
3. 光滑水平地面上疊放著兩個(gè)物體A和B,如圖2-4-20所示.水平拉力F作
3、用在物體B上,使A、B兩物體從靜止出發(fā)一起運(yùn)動(dòng).經(jīng)過時(shí)間t,撤去拉力F,再經(jīng)過時(shí)間t,物體A、B的動(dòng)能分別設(shè)為EA和EB,在運(yùn)動(dòng)過程中A、B始終保持相對靜止.以下有幾個(gè)說法:①EA+EB等于拉力F做的功;②EA+EB小于拉力F做的功;③EA等于撤去拉力F前摩擦力對物體A做的功;④EA大于撤去拉力F前摩擦力對物體A做的功.其中正確的是
( ).
圖2-4-20
A.①③ B.①④ C.②③ D.②④
答案 A
4.物體在恒定阻力作用下,以某初速度在水平面上沿直線滑行直到停止,以a、Ek、s和t分別表示物體運(yùn)動(dòng)的加速度大小、動(dòng)能、位移的大小和運(yùn)動(dòng)的時(shí)間,則以下各圖象中,
4、能正確反映這一過程的是
( ).
解析 物體在恒定阻力作用下運(yùn)動(dòng),其加速度隨時(shí)間不變,隨位移不變,選項(xiàng)A、B錯(cuò)誤;由動(dòng)能定理,fs=Ek-Ek0,解得Ek=Ek0-fs,選項(xiàng)C正確,D錯(cuò)誤.
答案 C
5. 如圖2-4-21所示,一質(zhì)量為m的滑塊以初速度v0從固定于地面的斜面底端A開始沖上斜面,到達(dá)某一高度后返回A,斜面與滑塊之間有摩擦.下列各項(xiàng)分別表示它在斜面上運(yùn)動(dòng)的速度v、加速度a、重力勢能Ep和機(jī)械能E隨時(shí)間變化的圖象,可能正確的是
( ).
圖2-4-21
解析 滑塊上滑和回落過程中受到的摩擦力方向不同,加速度大小不等、方向相同,上升時(shí)的加速度a1大于回落
5、時(shí)的加速度a2,故A、B錯(cuò).摩擦力一直做負(fù)功,機(jī)械能一直減小,D錯(cuò).設(shè)滑塊滑到最高點(diǎn)時(shí)的重力勢能為Epm,斜面傾角為θ,則上升過程Ep=mg·a1t2·sin θ=mga1sin θ·t2,回落過程Ep=Epm-mg·a2(t-t0)2·sin θ,其中t0為滑塊上滑的總時(shí)間,故C圖象為兩段拋物線,正確.
答案 C
6. 如圖2-4-22所示,將一輕彈簧下端固定在傾角為θ的粗糙斜面底端,彈簧處于自然狀態(tài)時(shí)上端位于A點(diǎn).質(zhì)量為m的物體從斜面上的B點(diǎn)由靜止下滑,與彈簧發(fā)生相互作用后,最終停在斜面上.下列說法正確的是
( ).
圖2-4-22
A.物體最終將停在A點(diǎn)
B.物體第一次
6、反彈后有可能到達(dá)B點(diǎn)
C.整個(gè)過程中重力勢能的減少量大于克服摩擦力做的功
D.整個(gè)過程中物體的最大動(dòng)能大于彈簧的最大彈性勢能
解析 物體最終處于靜止?fàn)顟B(tài),故受力平衡,由題知物體重力沿斜面的分力大于物體受到的沿斜面向上的滑動(dòng)摩擦力,故物體最終將停在A點(diǎn)以下,A項(xiàng)錯(cuò);根據(jù)能量守恒,物體在運(yùn)動(dòng)過程中受到滑動(dòng)摩擦力作用,機(jī)械能減少,故物體第一次反彈后不可能到達(dá)B點(diǎn),B項(xiàng)錯(cuò)誤;根據(jù)能量守恒,物體在整個(gè)過程中重力勢能的減少量等于克服摩擦力及克服彈簧彈力做的總功,故C項(xiàng)正確;整個(gè)過程中,物體處于平衡態(tài)時(shí)其動(dòng)能最大,設(shè)物體處于平衡態(tài)時(shí),彈簧的壓縮量為x1,則根據(jù)動(dòng)能定理有(mgsin θ-μmgcos
7、θ)·(xAB+x1)-ΔEp1=Ekm,當(dāng)物體位于斜面最低點(diǎn)時(shí)彈簧的彈性勢能最大,設(shè)此時(shí)彈簧的壓縮量為x2,根據(jù)動(dòng)能定理有(mgsin θ-μmgcos θ)(xAB+x2)-ΔEpm=0,由于x2>x1,故ΔEpm>Ekm,故D項(xiàng)錯(cuò).
答案 C
7.(2013·山東卷,16)如圖2-4-23所示,楔形木塊abc固定在水平面上,粗糙斜面ab和光滑斜面bc與水平面的夾角相同,頂角b處安裝一定滑輪.質(zhì)量分別為M、m(M>m)的滑塊、通過不可伸長的輕繩跨過定滑輪連接,輕繩與斜面平行.兩滑塊由靜止釋放后,沿斜面做勻加速運(yùn)動(dòng).若不計(jì)滑輪的質(zhì)量和摩擦,在兩滑塊沿斜面運(yùn)動(dòng)的過程中
( ).
8、圖2-4-23
A.兩滑塊組成的系統(tǒng)機(jī)械能守恒
B.重力對M做的功等于M動(dòng)能的增加
C.輕繩對m做的功等于m機(jī)械能的增加
D.兩滑塊組成系統(tǒng)的機(jī)械能損失等于M克服摩擦力做的功
解析 兩滑塊釋放后,M下滑、m上滑,摩擦力對M做負(fù)功,系統(tǒng)的機(jī)械能減小,減小的機(jī)械能等于M克服摩擦力做的功,選項(xiàng)A錯(cuò)誤,D正確.除重力對滑塊M做正功外,還有摩擦力和繩的拉力對滑塊M做負(fù)功,選項(xiàng)B錯(cuò)誤.繩的拉力對滑塊m做正功,滑塊m機(jī)械能增加,且增加的機(jī)械能等于拉力做的功,選項(xiàng)C正確.
答案 CD
8.下列各圖是反映汽車以額定功率P額從靜止開始勻加速啟動(dòng),最后做勻速運(yùn)動(dòng)的過程中,其速度隨時(shí)間以及加速度、牽引力
9、和功率隨速度變化的圖象,其中正確的是
( ).
解析 分析汽車啟動(dòng)過程可知,汽車先是牽引力不變的勻加速啟動(dòng)過程,加速度恒定,速度均勻增大,功率均勻增大;當(dāng)功率達(dá)到額定功率時(shí),功率不再變化,此后汽車為恒定功率啟動(dòng),速度繼續(xù)增大,牽引力減小,加速度減小,當(dāng)牽引力等于阻力時(shí),加速度減小到零,速度達(dá)到最大,然后勻速運(yùn)動(dòng).結(jié)合各選項(xiàng)的圖象可知,選項(xiàng)B錯(cuò)誤,A、C、D正確.
答案 ACD
9. 如圖2-4-24所示,M為固定在水平桌面上的有缺口的正方形木塊,abcd為半徑是R的光滑圓弧形軌道,a為軌道的最高點(diǎn),de面水平且有一定長度.今將質(zhì)量為m的小球在d點(diǎn)的正上方高為h處由靜止釋放,讓其自
10、由下落到d處切入軌道內(nèi)運(yùn)動(dòng),不計(jì)空氣阻力,則
( ).
圖2-4-24
A.只要h大于R,釋放后小球就能通過a點(diǎn)
B.只要改變h的大小,就能使小球通過a點(diǎn)后,既可能落回軌道內(nèi),又可能落到de面上
C.無論怎樣改變h的大小,都不可能使小球通過a點(diǎn)后落回軌道內(nèi)
D.調(diào)節(jié)h的大小,可以使小球飛出de面之外(即e的右側(cè))
解析 要使小球到達(dá)最高點(diǎn)a,則在最高點(diǎn)小球速度最小時(shí)有mg=m,得最小速度v=,由機(jī)械能守恒定律得mg(h-R)=mv2,得h=R,即h必須大于或等于R,小球才能通過a點(diǎn),A項(xiàng)錯(cuò);小球若能到達(dá)a點(diǎn),并從a點(diǎn)以最小速度平拋,有R=gt2,x=vt=R,所以,無論怎樣
11、改變h的大小,都不可能使小球通過a點(diǎn)后落回軌道內(nèi),B項(xiàng)錯(cuò),C項(xiàng)正確;如果h足夠大,小球可能會(huì)飛出de面之外,D項(xiàng)正確.
答案 CD
10.(2013·北京西城期末)如圖2-4-25甲所示,物體以一定的初速度從傾角α=37°的斜面底端沿斜面向上運(yùn)動(dòng),上升的最大高度為3.0 m.選擇地面為參考平面,上升過程中,物體的機(jī)械能E機(jī)隨高度h的變化如圖乙所示.(g=10 m/s2,sin 37°=0.60,cos 37°=0.80.)則
( ).
圖2-4-25
A.物體的質(zhì)量m=0.67 kg
B.物體與斜面間的動(dòng)摩擦因數(shù)μ=0.40
C.物體上升過程的加速度大小a=10 m/s2
12、
D.物體回到斜面底端時(shí)的動(dòng)能Ek=10 J
解析 ΔE機(jī)=-μmgcos α·=-μmghcot α=-20 J,在最大高度時(shí)Ep=mgh=30 J,可得m=1 kg,μ=0.5,A、B錯(cuò).由動(dòng)能定理-ma·=0-Ek0=-50 J得物體上升過程的加速度大小a=10 m/s2,C正確.上升和下滑過程的機(jī)械能損失相同,所以回到斜面底端時(shí)的動(dòng)能為30 J-20 J=10 J,D正確.
答案 CD
11.(2013·廊坊模擬)如圖2-4-26所示,一質(zhì)量為M=5.0 kg的平板車靜止在光滑水平地面上,平板車的上表面距離地面高h(yuǎn)=0.8 m,其右側(cè)足夠遠(yuǎn)處有一固定障礙物A.另一質(zhì)量為m=2.0
13、 kg可視為質(zhì)點(diǎn)的滑塊,以v0=8 m/s的水平初速度從左端滑上平板車,同時(shí)對平板車施加一水平向右、大小為5 N的恒力F.當(dāng)滑塊運(yùn)動(dòng)到平板車的最右端時(shí),兩者恰好相對靜止.此時(shí)撤去恒力F,當(dāng)平板車碰到障礙物A時(shí)立即停止運(yùn)動(dòng),滑塊水平飛離平板車后,恰能無碰撞地沿圓弧切線從B點(diǎn)切入光滑豎直圓弧軌道,并沿軌道下滑.已知滑塊與平板車間的動(dòng)摩擦因數(shù)μ=0.5,圓弧半徑為R=1.0 m,圓弧所對的圓心角∠BOD=θ=106°.取g=10 m/s2,sin 53°=0.8,cos 53°=0.6.求:
圖2-4-26
(1)平板車的長度;
(2)障礙物A與圓弧左端B的水平距離;
(3)滑塊運(yùn)動(dòng)到圓
14、弧軌道最低點(diǎn)C時(shí)對軌道壓力的大?。?
解析 (1)滑塊與平板車間的滑動(dòng)摩擦力Ff=μmg,
對滑塊,由牛頓第二定律得:a1==μg=5 m/s2
對平板車,由牛頓第二定律得:a2==3 m/s2
設(shè)經(jīng)過時(shí)間t1,滑塊與平板車相對靜止,共同速度為v,則:v=v0-a1t1=a2t1
滑塊的位移:x1=t1
平板車的位移:x2=t1
平板車的長度:l=x1-x2
解得:l=4 m.
(2)設(shè)滑塊從平板車上滑出后做平拋運(yùn)動(dòng)的時(shí)間為t2,則:h=gt,xAB=vt2
障礙物A與圓弧左端B的水平距離:xAB=1.2 m.
(3)對滑塊,從離開平板車到C點(diǎn),由動(dòng)能定理得:
mgh+m
15、gR=mv-mv2
在C點(diǎn)由牛頓第二定律得:FN-mg=m,
解得:FN=86 N.
由牛頓第三定律得滑塊運(yùn)動(dòng)到圓弧軌道最低點(diǎn)C時(shí)對軌道壓力的大小為86 N.
答案 (1)4 m (2)1.2 m (3)86 N
12.(2013·北京卷,23)蹦床比賽分成預(yù)備運(yùn)動(dòng)和比賽動(dòng)作兩個(gè)階段.最初,運(yùn)動(dòng)員靜止站在蹦床上;在預(yù)備運(yùn)動(dòng)階段,他經(jīng)過若干次蹦跳,逐漸增加上升高度,最終達(dá)到完成比賽動(dòng)作所需的高度;此后,進(jìn)入比賽動(dòng)作階段.
圖2-4-27
把蹦床簡化為一個(gè)豎直放置的輕彈簧,彈力大小F=kx(x為床面下沉的距離,k為常量).質(zhì)量m=50 kg的運(yùn)動(dòng)員靜止站在蹦床上,床面下沉x0=0
16、.10 m;在預(yù)備運(yùn)動(dòng)中,假定運(yùn)動(dòng)員所做的總功W全部用于增加其機(jī)械能;在比賽動(dòng)作中,把該運(yùn)動(dòng)員視作質(zhì)點(diǎn),其每次離開床面做豎直上拋運(yùn)動(dòng)的騰空時(shí)間均為Δt=2.0 s,設(shè)運(yùn)動(dòng)員每次落下使床面壓縮的最大深度均為x1.取重力加速度g=10 m/s2,忽略空氣阻力的影響.
(1)求常量k,并在圖2-4-27中畫出彈力F隨x變化的示意圖;
(2)求在比賽動(dòng)作中,運(yùn)動(dòng)員離開床面后上升的最大高度hm;
(3)借助F-x圖象可以確定彈力做功的規(guī)律,在此基礎(chǔ)上,求x1和W的值.
解析 (1)運(yùn)動(dòng)員靜止在蹦床上時(shí)受力平衡,
則mg=kx0.
代入數(shù)據(jù)得:k=5 000 N/m
F-x圖象如圖
(2)運(yùn)動(dòng)員離開床后做豎直上拋運(yùn)動(dòng),且騰空時(shí)間為2 s,由h=g(Δt)2得:最大高度hm=g2=×10×2 m=5 m
(3)由圖象可知彈簧彈力做功應(yīng)為F-x曲線下的面積,其規(guī)律為W=kΔx2.
在運(yùn)動(dòng)員從最低點(diǎn)到最高點(diǎn)過程中,由機(jī)械能守恒定律得:kx=mg(hm+x1)
代入數(shù)據(jù)得:x1=1.1 m
運(yùn)動(dòng)員所做的總功W+kx=mg(hm+x0)
代入數(shù)據(jù)解得W=2 525 J≈2.5×103 J.
答案 (1)5000 N/m 示意圖見解析 (2)5 m
(3)1.1 m 2.5×103 J