《高考數(shù)學(xué)精英備考專(zhuān)題講座 選考系列》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)精英備考專(zhuān)題講座 選考系列(13頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、
選考系列
一、高考預(yù)測(cè)
幾何證明選講是高考的選考內(nèi)容,主要考查相似三角形的判定與性質(zhì),射影定理,平行線分線段成比例定理;圓的切線定理,切割線定理,相交弦定理,圓周角定理以及圓內(nèi)接四邊形的判定與性質(zhì)等.題目難度不大,以容易題為主.對(duì)本部分的考查主要是一道選考解答題,預(yù)測(cè)2012年仍會(huì)如此,難度不會(huì)太大.
矩陣與變換主要考查二階矩陣的基本運(yùn)算,主要是以解答題的形式出現(xiàn).預(yù)測(cè)在2012年高考主要考查(1)矩陣的逆矩陣;(2)利用系數(shù)矩陣的逆矩陣求點(diǎn)的坐標(biāo)或曲線方程.
坐標(biāo)系與參數(shù)方程重點(diǎn)考查直線與圓的極坐標(biāo)方程,極坐標(biāo)與直角坐標(biāo)的互化;直線,圓與橢圓的參數(shù)方程,參數(shù)方程與普通方程的互化,
2、題目不難,考查 “轉(zhuǎn)化”為目的.預(yù)測(cè)2012高考中,極坐標(biāo)、參數(shù)方程與直角坐標(biāo)系間的互化仍是考查的熱點(diǎn),題目容易.
不等式選講是高考的選考內(nèi)容之一,主要考查絕對(duì)值的幾何意義,絕對(duì)值不等式的解法以及不等式證明的基本方法(比較法、分析法、綜合法).關(guān)于含有絕對(duì)值的不等式的問(wèn)題.預(yù)測(cè)2012年高考在本部分可能會(huì)考查不等式的證明或求最值問(wèn)題.
參數(shù)方程與極坐標(biāo)
1.極點(diǎn)的極徑為0,極角為任意角,即極點(diǎn)的坐標(biāo)不是惟一的.極徑ρ的值也允許取負(fù)值,極角θ允許取任意角,當(dāng)ρ<0時(shí),點(diǎn)M(ρ,θ)位于極角θ的終邊的反向延長(zhǎng)線上,且OM=|ρ|,在這樣的規(guī)定下,平面上的點(diǎn)的坐標(biāo)不是惟一的,即給定極坐標(biāo)
3、后,可以確定平面上惟一的點(diǎn),但給出平面上的點(diǎn),其極坐標(biāo)卻不是惟一的.這有兩種情況:①如果所給的點(diǎn)是極點(diǎn),其極徑確定,但極角可以是任意角;②如果所給點(diǎn)M的一個(gè)極坐標(biāo)為(ρ,θ)(ρ≠0),則(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)(k∈Z)也都是點(diǎn)M的極坐標(biāo).這兩種情況都使點(diǎn)的極坐標(biāo)不惟一,因此在解題的過(guò)程中要引起注意.
2.在進(jìn)行極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化時(shí),要求極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,且長(zhǎng)度單位相同,在這個(gè)前提下才能用轉(zhuǎn)化公式.同時(shí),在曲線的極坐標(biāo)方程和直角坐標(biāo)方程互化時(shí),如遇約分,兩邊平方,兩邊同乘以ρ,去分母等變形,應(yīng)特別注意變形的等價(jià)性.
4、3.對(duì)于極坐標(biāo)方程,需要明確:①曲線上點(diǎn)的極坐標(biāo)不一定滿足方程.如點(diǎn)P(1,1)在方程ρ=θ表示的曲線上,但點(diǎn)P的其他形式的坐標(biāo)都不滿足方程;②曲線的極坐標(biāo)方程不惟一,如ρ=1和ρ=-1都表示以極點(diǎn)為圓心,半徑為1的圓.
2.對(duì)于不等式的各項(xiàng)取倒數(shù)問(wèn)題,一定要分清各項(xiàng)的符號(hào),對(duì)于同號(hào)的,可運(yùn)用深化(2);若不同號(hào),可根據(jù)符號(hào)進(jìn)行判定.
3.解含絕對(duì)值的不等式的指導(dǎo)思想是去掉絕對(duì)值.常用的方法是:①由定義分段討論;②利用絕對(duì)值不等式的性質(zhì);③平方.
4.解含參數(shù)的不等式,如果轉(zhuǎn)化不等式的形式或求不等式的解集時(shí)與參數(shù)的取值范圍有關(guān),就必須分類(lèi)討論.注意:①要考慮參數(shù)的取值范圍;②用同一標(biāo)準(zhǔn)對(duì)
5、參數(shù)進(jìn)行劃分,做到不重不漏.5.利用絕對(duì)值的定義和幾何意義來(lái)分析,絕對(duì)值的特點(diǎn)是解決帶有絕對(duì)值符號(hào)問(wèn)題的關(guān)鍵,如何去掉絕對(duì)值符號(hào),一定要認(rèn)真總結(jié)規(guī)律與方法.6.絕對(duì)值不等式的證明通常與放縮法聯(lián)系在一起,放縮常用如下絕對(duì)值不等式:
①|(zhì)a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.
7.注意柯西不等式等號(hào)成立的條件?a1b2-a2b1=0,這時(shí)我們稱(chēng)(a1,a2),(b1,b2)成比例,如果b1≠0,b2≠0,那么a1b2-a2b1=0?=.若b1·b2=0,我們分情況說(shuō)明:①b1=b2=0,則原不等式兩邊都是0,自然成立;②b1=0,b2≠0,原不等式化為(a+a)b≥a
6、b,是自然成立的;③b1≠0,b2=0,原不等式和②的道理一樣,自然成立.正是因?yàn)閎1·b2=0時(shí),不等式恒成立,因此我們研究柯西不等式時(shí),總是假定b1·b2≠0,等號(hào)成立的條件可寫(xiě)成=.
三、易錯(cuò)點(diǎn)點(diǎn)睛
幾何證明選講 幾何證明選講是考查同學(xué)們推理能力、邏輯思維能力的好資料,題目以證明題為主,特別是一些定理的證明和用多個(gè)定理證明一個(gè)問(wèn)題的題目,我們更應(yīng)注意.重點(diǎn)把握以下內(nèi)容:1.射影定理的內(nèi)容及其證明;2.圓周角與弦切角定理的內(nèi)容及證明;3.圓冪定理的內(nèi)容及其證明;4.圓內(nèi)接四邊形的性質(zhì)與判定;5.平行投影的性質(zhì)與圓錐曲線的統(tǒng)一定義.
如圖,A,B,C,D四點(diǎn)在同一圓上,A
7、D的延長(zhǎng)線與BC的延長(zhǎng)線交于E點(diǎn),且EC=ED.(1)證明:CD∥AB;(2)延長(zhǎng)CD到F,延長(zhǎng)DC到G,使得EF=EG,證明:A,B,G,F(xiàn)四點(diǎn)共圓.
證明 (1)因?yàn)镋C=ED,所以∠EDC=∠ECD.
因?yàn)锳,B,C,D四點(diǎn)在同一圓上,所以∠EDC=∠EBA.
故∠ECD=∠EBA.所以CD∥AB.
(2)由(1)知,AE=BE.因?yàn)镋F=EG,故∠EFD=∠EGC,從而∠FED=∠GEC.連結(jié)AF,BG,則△EFA≌△EGB,故∠FAE=∠GBE.又CD∥AB,∠EDC=∠ECD,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A,B,G,F(xiàn)四點(diǎn)共圓.
易錯(cuò)提醒
8、(1)對(duì)四點(diǎn)共圓的性質(zhì)定理和判定定理理解不透.(2)不能正確作出輔助線,構(gòu)造四邊形.(3)角的關(guān)系轉(zhuǎn)化不當(dāng).
矩陣與變換矩陣與變換易錯(cuò)易漏 (1)因矩陣乘法不滿足交換律,多次變換對(duì)應(yīng)矩陣的乘法順序易錯(cuò). (2)圖形變換后,所求圖形方程易代錯(cuò).
已知矩陣M=\o(\s\up12(1b,N=\o(\s\up12(c0,且MN=\o(\s\up12(2-2 .(1)求實(shí)數(shù)a,b,c,d的值;(2)求直線y=3x在矩陣M所對(duì)應(yīng)的線性變換作用下的象的方程.
解 方法一 (1)由題設(shè)得解得
在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單
9、位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C2的方程為ρ(cos θ-sin θ)+1=0,則C1與C2的交點(diǎn)個(gè)數(shù)為_(kāi)_______.
解 曲線C1化為普通方程為圓:x2+(y-1)2=1,曲線C2化為直角坐標(biāo)方程為直線:x-y+1=0.因?yàn)閳A心(0,1)在直線x-y+1=0上,故直線與圓相交,交點(diǎn)個(gè)數(shù)為2
易錯(cuò)提醒 (1)忽視將C1的參數(shù)方程和C2的極坐標(biāo)方程化為直角坐標(biāo)系下的普通方程,即轉(zhuǎn)化目標(biāo)不明確.(2)轉(zhuǎn)化或計(jì)算錯(cuò)誤.
不等式選講[來(lái)源:高&考%資(源#網(wǎng) wxc]
設(shè)a、b是非負(fù)實(shí)數(shù),求證:a3+b3≥(a2+b2).
證明 由a,b是非負(fù)實(shí)數(shù),作差得a3+b3-
10、(a2+b2)=a2(-)+b2(-)
=(-)[()5-()5].
當(dāng)a≥b時(shí),≥,從而()5≥()5,得(-)[()5-()5]≥0;
當(dāng)a0.
所以a3+b3≥(a2+b2).
易錯(cuò)提醒 (1)用作差法證明不等式入口較易,關(guān)鍵是分解因式,多數(shù)考生對(duì)分組分解因式不熟練.(2)分解因式后,與零比較時(shí),易忽略分類(lèi)討論.
設(shè),且,求的取值范圍。
易錯(cuò)提醒此題易在時(shí)處出錯(cuò),忽略了的前提。這提醒我們分段求解的結(jié)果要考慮分段的前提。
四、典型習(xí)題導(dǎo)練
1、自圓外一點(diǎn)引圓的一條切線,切點(diǎn)為,為的中點(diǎn),過(guò)點(diǎn)引圓的割線交該
11、圓于兩點(diǎn),且,.⑴求證:與相似;
⑵求的大小.
【解析】本小題主要考查平面幾何的證明及其運(yùn)算,具體涉及圓的性質(zhì)以及三角形相似等有關(guān)知識(shí)內(nèi)容.
⑴因?yàn)闉閳A的切線,所以.又為中點(diǎn),所以.因?yàn)椋耘c相似. (5分)
⑵由⑴中與相似,可得.在中,
由,得.(10分)
(Ⅰ)求證:平分;
(Ⅱ)若,,求圓弧的長(zhǎng).
【解析】(Ⅰ)證明:連結(jié),則.∥, ,為弧的中點(diǎn)
平分… 5分
(Ⅱ)連結(jié)、,則,為等邊三角形,
,又的長(zhǎng)為… 10分
5、如圖內(nèi)接于圓,,直線切圓于點(diǎn),∥相交于點(diǎn).
(1)求證:;
(2)若.
6、如圖,直線AB經(jīng)過(guò)圓上O的點(diǎn)C,并且OA=OB,CA=CB
12、,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=,圓O的半徑為3,求OA的長(zhǎng).
【解析】如圖,連接,因?yàn)?,所以?
因?yàn)槭菆A的半徑,所以是圓的切線.……………3分
第22題圖
因?yàn)槭侵睆剑?,所以?
又,
所以,又因?yàn)椋?
所以∽,所以, ………5分
,∽,.
設(shè),則,因?yàn)?,所以,所以?分
所以. 10分
7、在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),若以該直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:(其中為常數(shù))⑴若曲線與曲線只有一個(gè)公共點(diǎn),求的取值范圍;⑵當(dāng)時(shí),求曲線
13、上的點(diǎn)與曲線上點(diǎn)的最小距離.
【解析】本小題主要考查極坐標(biāo)與參數(shù)方程的相關(guān)知識(shí),具體涉及到極坐標(biāo)方程與平面直角坐標(biāo)方程的互化、直線與曲線的位置關(guān)系以及點(diǎn)到直線的距離等知識(shí)內(nèi)容.對(duì)于曲線M,消去參數(shù),得普通方程為,曲線是拋物線的一部分; 對(duì)于曲線N,化成直角坐標(biāo)方程為,曲
線N是一條直線. (2分)
8、在直角坐標(biāo)系中,直線的參數(shù)方程為在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),極軸與x軸的非負(fù)半軸重合)中,
(Ⅰ)求圓心C到直線的距離;(Ⅱ)若直線被圓C截得的弦長(zhǎng)為的值.
【解析】(Ⅰ)圓C的方程整理可得: 化為標(biāo)準(zhǔn)方程得:.圓心為,半徑為. 直線一般方程為
14、:,故圓心C到的距離
(Ⅱ)由題意知圓心C到直線的距離.由(Ⅰ)知,得----10分
9、在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為.在極坐標(biāo)系(與直角坐標(biāo)系取相同的長(zhǎng)度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.
(Ⅰ)求圓的直角坐標(biāo)方程;Ⅱ)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求.
10、在平面直角坐標(biāo)系xOy中,判斷曲線C:(q為參數(shù))與直線l:(t為參數(shù))是否有公共點(diǎn),并證明你的結(jié)論.
11、在直角坐標(biāo)系中,直線l的參數(shù)方程為:在以O(shè)為極點(diǎn),以x?軸的正半軸為極軸的極坐標(biāo)系中,圓C的極坐標(biāo)方程為:(Ⅰ)將直線l的參數(shù)方程化為普通方程,圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
15、(Ⅱ)判斷直線與圓C的位置關(guān)系.
【解析】(1)將直線的參數(shù)方程經(jīng)消參可得直線的普通方程為:3分
由得,
即圓直角坐標(biāo)方程為.6分
(2)由(1)知,圓的圓心,半徑,
則圓心到直線的距離故直線與圓相交.10分
13、已知函數(shù)⑴解不等式;⑵若關(guān)于的方程的解集為空集,求實(shí)數(shù)的取值范圍.
【解析】本小題主要考查不等式的相關(guān)知識(shí),具體涉及到絕對(duì)值不等式及不等式的解法以及函數(shù)等有關(guān)知識(shí)內(nèi)容.
(1)當(dāng)時(shí),由解得:;當(dāng)時(shí),由得,舍去;當(dāng)時(shí),由,解得. 所以原不等式解集為.
16、(2)由(1)中分段函數(shù)的解析式可知:在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增.并且,所以函數(shù)的值域?yàn)?從而的取值范圍是,進(jìn)而的取值范圍是.根據(jù)已知關(guān)于的方程的解集為空集,所以實(shí)數(shù)的取值范圍是. (10分)
16、設(shè)均為正數(shù),證明:.
【解析】本題考查基本不等式的應(yīng)用,難點(diǎn)在于通過(guò)觀察分析、構(gòu)造不等式.
即得
19、已知a>0,b>0,a+b=1,求證:.
【解析】法一:因?yàn)閍>0,b>0,a+b=1,所以 ()[(2a+1)+(2b+1)]
=1+4+……5分≥5+2=9.……… 3分
而 (2a+1)+(2b+1)=4,所以.………… 2分
20、設(shè)矩陣M=.(1)求
17、矩陣M的逆矩陣M-1;(2)求矩陣M的特征值.
【解析】(1)矩陣A=(ad-bc≠0)的逆矩陣為A-1=.
所以矩陣M的逆矩陣M-1=.……… 5分.
(2)矩陣M的特征多項(xiàng)式為f(l)==l2-4l-5.
令f(l)=0,得到M的特征值為-1或5.……… 10分
21、在平面直角坐標(biāo)系xOy中,直線在矩陣對(duì)應(yīng)的變換下得到的直線過(guò)點(diǎn),求實(shí)數(shù)的值.
【解析】設(shè)變換T:,則,即…5分代入直線,得.
將點(diǎn)代入上式,得k4.………10分
22、已知二階矩陣M有特征值=3及對(duì)應(yīng)的一個(gè)特征向量,并且M對(duì)應(yīng)的變換將