2019年高考數(shù)學(xué) 考綱解讀與熱點(diǎn)難點(diǎn)突破 專題19 概率與統(tǒng)計(jì)教學(xué)案 文(含解析).doc
《2019年高考數(shù)學(xué) 考綱解讀與熱點(diǎn)難點(diǎn)突破 專題19 概率與統(tǒng)計(jì)教學(xué)案 文(含解析).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019年高考數(shù)學(xué) 考綱解讀與熱點(diǎn)難點(diǎn)突破 專題19 概率與統(tǒng)計(jì)教學(xué)案 文(含解析).doc(12頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
概率與統(tǒng)計(jì) 【2019年高考考綱解讀】 1.高考中主要利用計(jì)數(shù)原理求解排列數(shù)、涂色、抽樣問(wèn)題,以小題形式考查. 2.二項(xiàng)式定理主要考查通項(xiàng)公式、二項(xiàng)式系數(shù)等知識(shí),近幾年也與函數(shù)、不等式、數(shù)列交匯,值得關(guān)注. 3.以選擇題、填空題的形式考查古典概型、幾何概型的基本應(yīng)用. 4.將古典概型與概率的性質(zhì)相結(jié)合,考查知識(shí)的綜合應(yīng)用能力. 5.以選擇題、填空題的形式考查隨機(jī)抽樣、樣本的數(shù)字特征、統(tǒng)計(jì)圖表、回歸方程、獨(dú)立性檢驗(yàn)等. 6.在概率與統(tǒng)計(jì)的交匯處命題,以解答題中檔難度出現(xiàn). 【重點(diǎn)、考點(diǎn)剖析】 一、排列組合與計(jì)數(shù)原理的應(yīng)用 1.分類(lèi)加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理 如果每種方法都能將規(guī)定的事件完成,則要用分類(lèi)加法計(jì)數(shù)原理將方法種數(shù)相加;如果需要通過(guò)若干步才能將規(guī)定的事件完成,則要用分步乘法計(jì)數(shù)原理將各步的方法種數(shù)相乘. 2. 名稱 排列 組合 相同點(diǎn) 都是從n個(gè)不同元素中取m(m≤n)個(gè)元素,元素?zé)o重復(fù) 不同點(diǎn) ①排列與順序有關(guān); ②兩個(gè)排列相同,當(dāng)且僅當(dāng)這兩個(gè)排列的元素及其排列順序完全相同 ①組合與順序無(wú)關(guān); ②兩個(gè)組合相同,當(dāng)且僅當(dāng)這兩個(gè)組合的元素完全相同 二、二項(xiàng)式定理 1.通項(xiàng)與二項(xiàng)式系數(shù) Tr+1=Can-rbr,其中C(r=0,1,2,…,n)叫做二項(xiàng)式系數(shù). 2.各二項(xiàng)式系數(shù)之和 (1)C+C+C+…+C=2n. (2)C+C+…=C+C+…=2n-1. 三、古典概型與幾何概型 1.古典概型的概率公式 P(A)==. 2.幾何概型的概率公式 P(A)= . 四、相互獨(dú)立事件和獨(dú)立重復(fù)試驗(yàn) 1.條件概率 在A發(fā)生的條件下B發(fā)生的概率: P(B|A)=. 2.相互獨(dú)立事件同時(shí)發(fā)生的概率 P(AB)=P(A)P(B). 3.獨(dú)立重復(fù)試驗(yàn)、二項(xiàng)分布 如果事件A在一次試驗(yàn)中發(fā)生的概率是p,那么它在n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率為 Pn(k)=Cpk(1-p)n-k,k=0,1,2,…,n. 五、離散型隨機(jī)變量的分布列、均值與方差 1.均值與方差的性質(zhì) (1)E(aX+b)=aE(X)+b; (2)D(aX+b)=a2D(X)(a,b為實(shí)數(shù)). 2.兩點(diǎn)分布與二項(xiàng)分布的均值、方差 (1)若X服從兩點(diǎn)分布,則E(X)=p,D(X)=p(1-p); (2)若X~B(n,p),則E(X)=np,D(X)=np(1-p). 【題型示例】 題型一 排列組合與計(jì)數(shù)原理 例1、(1)[2018全國(guó)卷Ⅰ]從2位女生,4位男生中選3人參加科技比賽,且至少有1位女生入選,則不同的選法共有________種.(用數(shù)字填寫(xiě)答案) (2)[2018浙江卷]從1,3,5,7,9中任取2個(gè)數(shù)字,從0,2,4,6中任取2個(gè)數(shù)字,一共可以組成________個(gè)沒(méi)有重復(fù)數(shù)字的四位數(shù).(用數(shù)字作答) 【解析】不含有0的四位數(shù)有=720(個(gè)). 含有0的四位數(shù)有=540(個(gè)). 綜上,四位數(shù)的個(gè)數(shù)為720+540=1 260. 【答案】1 260 【方法技巧】解排列、組合的應(yīng)用題,通常有以下途徑: (1)以元素為主體,即先滿足特殊元素的要求,再考慮其他元素. (2)以位置為主體,即先滿足特殊位置的要求,再考慮其他位置. (3)先不考慮附加條件,計(jì)算出排列或組合數(shù),再減去不符合要求的排列或組合數(shù). 【變式探究】(2017全國(guó)Ⅱ)安排3名志愿者完成4項(xiàng)工作,每人至少完成1項(xiàng),每項(xiàng)工作由1人完成,則不同的安排方式共有________種. 站邀請(qǐng),決定對(duì)甲、乙、丙、丁這四個(gè)景區(qū)進(jìn)行體驗(yàn)式旅游,若不能最先去甲景區(qū)旅游,不能最后去乙景區(qū)和丁景區(qū)旅游,則小李可選的旅游路線數(shù)為( ) A.24 B.18 C.16 D.10 解析:分兩種情況,第一種:最后體驗(yàn)甲景區(qū),則有A種可選的路線;第二種:不在最后體驗(yàn)甲景區(qū),則有CA種可選的路線.所以小李可選的旅游路線數(shù)為A+CA=10.選D. 答案:D 【變式探究】某校畢業(yè)典禮上有6個(gè)節(jié)目,考慮整體效果,對(duì)節(jié)目演出順序有如下要求:節(jié)目甲必須排在前三位,且節(jié)目丙、丁必須排在一起.則該校畢業(yè)典禮節(jié)目演出順序的編排方案共有( ) A.120種 B.156種 C.188種 D.240種 解析:解法一 記演出順序?yàn)?~6號(hào),對(duì)丙、丁的排序進(jìn)行分類(lèi),丙、丁占1和2號(hào),2和3號(hào),3和4號(hào),4和5號(hào),5和6號(hào),其排法種數(shù)分別為AA,AA,CAA,CAA,CAA,故總編排方案有AA+AA+CAA+CAA+CAA=120(種). 解法二 記演出順序?yàn)?~6號(hào),按甲的編排進(jìn)行分類(lèi),①當(dāng)甲在1號(hào)位置時(shí),丙、丁相鄰的情況有4種,則有CAA=48(種);②當(dāng)甲在2號(hào)位置時(shí),丙、丁相鄰的情況有3種,共有CAA=36(種);③當(dāng)甲在3號(hào)位置時(shí),丙、丁相鄰的情況有3種,共有CAA=36(種).所以編排方案共有48+36+36=120(種). 答案:A 【變式探究】中國(guó)古代中的“禮、樂(lè)、射、御、書(shū)、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂(lè)”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書(shū)”,指各種歷史文化知識(shí);“數(shù)”,數(shù)學(xué).某校國(guó)學(xué)社團(tuán)開(kāi)展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“數(shù)”必須排在前三節(jié),且“射”和“御”兩門(mén)課程相鄰排課,則“六藝”課程講座不同的排課順序共有( ) A.120種 B.156種 C.188種 D.240種 (2)若自然數(shù)n使得作豎式加法n+(n+1)+(n+2)均不產(chǎn)生進(jìn)位現(xiàn)象,則稱n為“開(kāi)心數(shù)”.例如:32是“開(kāi)心數(shù)”.因?yàn)?2+33+34不產(chǎn)生進(jìn)位現(xiàn)象;23不是“開(kāi)心數(shù)”,因?yàn)?3+24+25產(chǎn)生進(jìn)位現(xiàn)象,那么,小于100的“開(kāi)心數(shù)”的個(gè)數(shù)為( ) A.9 B.10 C.11 D.12 答案 D 解析 根據(jù)題意個(gè)位數(shù)需要滿足要求: n+(n+1)+(n+2)<10,即n<2.3, ∴個(gè)位數(shù)可取0,1,2三個(gè)數(shù), ∵十位數(shù)需要滿足:3n<10,∴n<3.3, ∴十位可以取0,1,2,3四個(gè)數(shù),故小于100的“開(kāi)心數(shù)”共有34=12(個(gè)). 【感悟提升】(1)在應(yīng)用分類(lèi)加法計(jì)數(shù)原理和分步乘法計(jì)數(shù)原理時(shí),一般先分類(lèi)再分步,每一步當(dāng)中又可能用到分類(lèi)加法計(jì)數(shù)原理. (2)對(duì)于復(fù)雜的兩個(gè)原理綜合使用的問(wèn)題,可恰當(dāng)列出示意圖或表格,使問(wèn)題形象化、直觀化. 【變式探究】 (1)某微信群中有甲、乙、丙、丁、戊五個(gè)人玩搶紅包游戲,現(xiàn)有4個(gè)紅包,每人最多搶一個(gè),且紅包被全部搶完,4個(gè)紅包中有2個(gè)6元,1個(gè)8元,1個(gè)10元(紅包中金額相同視為相同紅包),則甲、乙都搶到紅包的情況有( ) A.18種 B.24種 C.36種 D.48種 答案 C 解析 若甲、乙搶的是一個(gè)6元和一個(gè)8元的,剩下2個(gè)紅包被剩下的3人中的2個(gè)人搶走,有AA=12(種)搶法; 若甲、乙搶的是一個(gè)6元和一個(gè)10元的,剩下2個(gè)紅包被剩下的3人中的2個(gè)人搶走,有AA=12(種)搶法; 若甲、乙搶的是一個(gè)8元和一個(gè)10元的,剩下2個(gè)紅包被剩下的3人中的2個(gè)人搶走,有AC=6(種)搶法; 若甲、乙搶的是兩個(gè)6元的,剩下2個(gè)紅包被剩下的3人中的2個(gè)人搶走,有A=6(種)搶法. 根據(jù)分類(lèi)加法計(jì)數(shù)原理可得甲、乙都搶到紅包的情況共有36種. (2)(2018百校聯(lián)盟聯(lián)考)某山區(qū)希望小學(xué)為豐富學(xué)生的伙食,教師們?cè)谛@附近開(kāi)辟了如圖所示的四塊菜地,分別種植西紅柿、黃瓜、茄子三種產(chǎn)量大的蔬菜,若這三種蔬菜種植齊全,同一塊地只能種植一種蔬菜,且相鄰的兩塊地不能種植相同的蔬菜,則不同的種植方式共有( ) 1 2 3 4 A.9種 B.18種 C.12種 D.36種 答案 B 解析 若種植2塊西紅柿,則他們?cè)?3,14或24位置上種植,剩下兩個(gè)位置種植黃瓜和茄子,所以共有32=6(種)種植方式; 若種植2塊黃瓜或2塊茄子也是3種種植方式,所以一共有63=18(種)種植方式. 題型二 二項(xiàng)式定理 例2、(1)[2018全國(guó)卷Ⅲ]5的展開(kāi)式中x4的系數(shù)為( ) A.10 B.20 C.40 D.80 【解析】 5的展開(kāi)式的通項(xiàng)公式為T(mén)r+1=C5(x2)5-rr=C52rx10-3r,令10-3r=4,得r=2.故展開(kāi)式中x4的系數(shù)為C522=40. 故選C. 【答案】C 【變式探究】(2017浙江)已知多項(xiàng)式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=________,a5=________. 答案 16 4 解析 a4是x項(xiàng)的系數(shù),由二項(xiàng)式的展開(kāi)式得 a4=CC2+CC22=16. a5是常數(shù)項(xiàng),由二項(xiàng)式的展開(kāi)式得a5=CC22=4. 【變式探究】(2017浙江)從6男2女共8名學(xué)生中選出隊(duì)長(zhǎng)1人,副隊(duì)長(zhǎng)1人,普通隊(duì)員2人組成4人服務(wù)隊(duì),要求服務(wù)隊(duì)中至少有1名女生,共有________種不同的選法.(用數(shù)字作答) 答案 660 【變式探究】若(1-3x)2 018=a0+a1x+…+a2 018x2 018,x∈R,則a13+a232+…+a2 01832 018的值為( ) A.22 018-1 B.82 018-1 C.22 018 D.82 018 【解析】由已知,令x=0,得a0=1,令x=3,得a0+a13+a232+…+a2 01832 018=(1-9)2 018=82 018,所以a13+a232+…+a2 01832 018=82 018-a0=82 018-1,故選B. 【答案】B 【方法技巧】 (1)利用二項(xiàng)式定理求解的兩種常用思路 ①二項(xiàng)式定理中最關(guān)鍵的是通項(xiàng)公式,求展開(kāi)式中特定的項(xiàng)或者特定項(xiàng)的系數(shù)均是利用通項(xiàng)公式和方程思想解決的. ②二項(xiàng)展開(kāi)式的系數(shù)之和通常是通過(guò)對(duì)二項(xiàng)式及其展開(kāi)式中的變量賦值得出的,注意根據(jù)展開(kāi)式的形式給變量賦值. (2)【特別提醒】在應(yīng)用通項(xiàng)公式時(shí),要注意以下幾點(diǎn): ①它表示二項(xiàng)展開(kāi)式的任意項(xiàng),只要n與r確定,該項(xiàng)就隨之確定; ②Tr+1是展開(kāi)式中的第r+1項(xiàng),而不是第r項(xiàng); (2)已知1名工人每月只有維修1臺(tái)機(jī)器的能力,每月需支付給每位工人1萬(wàn)元的工資.每臺(tái)機(jī)器不出現(xiàn)故障或出現(xiàn)故障能及時(shí)維修,就能使該廠產(chǎn)生5萬(wàn)元的利潤(rùn),否則將不產(chǎn)生利潤(rùn).若該廠現(xiàn)有2名工人,求該廠每月獲利的均值. 【解析】 (1)1臺(tái)機(jī)器是否出現(xiàn)故障可看作1次試驗(yàn),在1次試驗(yàn)中,機(jī)器出現(xiàn)故障設(shè)為事件A,則事件A的概率為.該廠有4臺(tái)機(jī)器,就相當(dāng)于4次獨(dú)立重復(fù)試驗(yàn),可設(shè)出現(xiàn)故障的機(jī)器臺(tái)數(shù)為X,則X~B, ∴P(X=0)=C4=,P(X=1)=C 3=,P(X=2)=C22=,P(X=3)=C3=,P(X=4)=C4=. ∴X的分布列為 X 0 1 2 3 4 P 設(shè)該廠有n名工人,則“每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修”為X≤n,即X=0,X=1,X=2,…,X=n,這n+1個(gè)互斥事件的和事件,則 n 0 1 2 3 4 P(X≤n) 1 ∵<90%≤,∴該廠至少需要3名工人,才能保證每臺(tái)機(jī)器在任何時(shí)刻同時(shí)出現(xiàn)故障時(shí)能及時(shí)進(jìn)行維修的概率不少于90%. (2)設(shè)該廠每月可獲利Y萬(wàn)元,則Y的所有可能取值為18,13,8,P(Y=18)=P(X=0)+P(X=1)+P(X=2)=,P(Y=13)=P(X=3)=,P(Y=8)=P(X=4)=, ∴Y的分布列為 Y 18 13 8 P 則E(Y)=18+13+8=(萬(wàn)元). 故該廠每月獲利的均值為萬(wàn)元. 【方法技巧】 (1)求復(fù)雜事件概率的兩種方法 ①直接法:正確分析復(fù)雜事件的構(gòu)成,將復(fù)雜事件轉(zhuǎn)化為幾個(gè)彼此互斥的事件的和事件或幾個(gè)相互獨(dú)立事件同時(shí)發(fā)生的積事件或一獨(dú)立重復(fù)試驗(yàn)問(wèn)題,然后用相應(yīng)概率公式求解. ②間接法:當(dāng)復(fù)雜事件正面情況比較多,反面情況較少,則可利用其對(duì)立事件進(jìn)行求解.對(duì)于“至少”“至多”等問(wèn)題往往也用這種方法求解. (2)注意辨別獨(dú)立重復(fù)試驗(yàn)的基本特征:①在每次試驗(yàn)中,試驗(yàn)結(jié)果只有發(fā)生與不發(fā)生兩種情況;②在每次試驗(yàn)中,事件發(fā)生的概率相同. 【變式探究】某乒乓球俱樂(lè)部派甲、乙、丙三名運(yùn)動(dòng)員參加某運(yùn)動(dòng)會(huì)的單打資格選拔賽,本次選拔賽只有出線和未出線兩種情況.規(guī)定一名運(yùn)動(dòng)員出線記1分,未出線記0分.假設(shè)甲、乙、丙出線的概率分別為,,,他們出線與未出線是相互獨(dú)立的. (1)求在這次選拔賽中,這三名運(yùn)動(dòng)員至少有一名出線的概率; (2)記在這次選拔賽中,甲、乙、丙三名運(yùn)動(dòng)員的得分之和為隨機(jī)變量ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ. 解析:(1)記“甲出線”為事件A,“乙出線”為事件B,“丙出線”為事件C,“甲、乙、丙至少有一名出線”為事件D, 則P(D)=1-P()=1-=. 所以ξ的分布列為 ξ 0 1 2 3 P Eξ=0+1+2+3=. 題型五 離散型隨機(jī)變量的分布列、均值與方差 例5、[2018北京卷]電影公司隨機(jī)收集了電影的有關(guān)數(shù)據(jù),經(jīng)分類(lèi)整理得到下表: 電影類(lèi)型 第一類(lèi) 第二類(lèi) 第三類(lèi) 第四類(lèi) 第五類(lèi) 第六類(lèi) 電影部數(shù) 140 50 300 200 800 510 好評(píng)率 0.4 0.2 0.15 0.25 0.2 0.1 好評(píng)率是指:一類(lèi)電影中獲得好評(píng)的部數(shù)與該類(lèi)電影的部數(shù)的比值. 假設(shè)所有電影是否獲得好評(píng)相互獨(dú)立. (1)從電影公司收集的電影中隨機(jī)選取1部,求這部電影是獲得好評(píng)的第四類(lèi)電影的概率. (2)從第四類(lèi)電影和第五類(lèi)電影中各隨機(jī)選取1部,估計(jì)恰有1部獲得好評(píng)的概率. (3)假設(shè)每類(lèi)電影得到人們喜歡的概率與表格中該類(lèi)電影的好評(píng)率相等,用“ξk=1”表示第k類(lèi)電影得到人們喜歡,“ξk=0”表示第k類(lèi)電影沒(méi)有得到人們喜歡(k=1,2,3,4,5,6).寫(xiě)出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小關(guān)系. 【解析】(1)解:由題意知,樣本中電影的總部數(shù)是140+50+300+200+800+510=2 000, 第四類(lèi)電影中獲得好評(píng)的電影部數(shù)是2000.25=50, 故所求概率為=0.025. (2)解:設(shè)事件A為“從第四類(lèi)電影中隨機(jī)選出的電影獲得好評(píng)”,事件B為“從第五類(lèi)電影中隨機(jī)選出的電影獲得好評(píng)”. 故所求概率為P(A+B)=P(A)+P(B)=P(A)(1-P(B))+(1-P(A))P(B). 由題意知P(A)估計(jì)為0.25,P(B)估計(jì)為0.2. 故所求概率估計(jì)為0.250.8+0.750.2=0.35. (3)解:Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6. 【方法技巧】解答離散型隨機(jī)變量的分布列及相關(guān)問(wèn)題的一般思路: (1)明確隨機(jī)變量可能取哪些值. (2)結(jié)合事件特點(diǎn)選取恰當(dāng)?shù)挠?jì)算方法,并計(jì)算這些可能取值的概率值. (3)根據(jù)分布列和期望、方差公式求解. 【變式探究】 (2017全國(guó)Ⅲ)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到下面的頻數(shù)分布表: 最高氣溫 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40) 天數(shù) 2 16 36 25 7 4 以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率. (1)求六月份這種酸奶一天的需求量X(單位:瓶)的分布列; (2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量n(單位:瓶)為多少時(shí),Y的期望達(dá)到最大值? 解 (1)由題意知,X所有的可能取值為200,300,500, 由表格數(shù)據(jù)知, P(X=200)==0.2, P(X=300)==0.4, P(X=500)==0.4. 則X的分布列為 X 200 300 500 P 0.2 0.4 0.4 (2)由題意知,這種酸奶一天的需求量至多為500,至少為200,因此只需考慮200≤n≤500. 當(dāng)300≤n≤500時(shí), 若最高氣溫不低于25,則Y=6n-4n=2n; 若最高氣溫位于區(qū)間[20,25),則Y=6300+2(n-300)-4n=1 200-2n; 若最高氣溫低于20,則Y=6200+2(n-200)-4n=800-2n, 因此E(Y)=2n0.4+(1 200-2n)0.4+(800-2n)0.2=640-0.4n. 當(dāng)200≤n<300時(shí), 若最高氣溫不低于20,則Y=6n-4n=2n; 若最高氣溫低于20,則Y=6200+2(n-200)-4n=800-2n, 因此E(Y)=2n(0.4+0.4)+(800-2n)0.2=160+1.2n. 所以當(dāng)n=300時(shí),Y的期望達(dá)到最大值,最大值為520元. 【變式探究】某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,…,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件.假定甲、乙兩廠的產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn). (1)已知甲廠產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如下表所示: X1 5 6 7 8 P 0.4 a b 0.1 且X1的數(shù)學(xué)期望EX1=6,求a,b的值; (2)為分析乙廠產(chǎn)品的等級(jí)系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 3 8 3 4 3 4 4 7 5 6 7 用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望; (3)在(1),(2)的條件下,若以“性價(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買(mǎi)性?說(shuō)明理由. 注:①產(chǎn)品的“性價(jià)比”=產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望/產(chǎn)品的零售價(jià); ②“性價(jià)比”大的產(chǎn)品更具可購(gòu)買(mǎi)性. (3)乙廠的產(chǎn)品更具可購(gòu)買(mǎi)性,理由如下: ∵甲廠產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望等于6,價(jià)格為6元/件, ∴其性價(jià)比為=1, ∵乙廠產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望等于4.8,價(jià)格為4元/件, ∴其性價(jià)比為=1.2, 又1.2>1,∴乙廠的產(chǎn)品更具可購(gòu)買(mǎi)性.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019年高考數(shù)學(xué) 考綱解讀與熱點(diǎn)難點(diǎn)突破 專題19 概率與統(tǒng)計(jì)教學(xué)案 文含解析 2019 年高 數(shù)學(xué) 解讀 熱點(diǎn) 難點(diǎn) 突破 專題 19 概率 統(tǒng)計(jì) 教學(xué) 解析
鏈接地址:http://www.3dchina-expo.com/p-6195537.html