12、
0
0.1
0.4
0.4
0.1
現甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站.
(1)為了盡最大可能在各自允許的時間內趕到火車站,甲和乙應如何選擇各自的路徑?
(2)用X表示甲、乙兩人中在允許的時間內能趕到火車站的人數,針對(1)的選擇方案,求X的分布列和數學期望.
解 (1)Ai表示事件“甲選擇路徑Li時,40分鐘內趕到火車站”,Bi表示事件“乙選擇路徑Li時,50分鐘內趕到火車站”,i=1,2.
用頻率估計相應的概率可得
P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,
∵P(A1)>P(A2),∴甲應選擇L1;
P(
13、B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,
∵P(B2)>P(B1),∴乙應選擇L2.
(2)A,B分別表示針對(1)的選擇方案,甲、乙在各自允許的時間內趕到火車站,
由(1)知P(A)=0.6,P(B)=0.9,又由題意知,A,B獨立,
∴P(X=0)=P()=P()P()=0.4×0.1=0.04,
P(X=1)=P(B+A)=P()P(B)+P(A)P()
=0.4×0.9+0.6×0.1=0.42,
P(X=2)=P(AB)=P(A)P(B)=0.6×0.9=0.54.
∴X的分布列為
X
0
1
2
P
0
14、.04
0.42
0.54
∴E(X)=0×0.04+1×0.42+2×0.54=1.5.
14.某城市有甲、乙、丙3個旅游景點,一位游客游覽這3個景點的概率分別是0.4、0.5、0.6,且游客是否游覽哪個景點互不影響,用X表示該游客離開該城市時游覽的景點數與沒有游覽的景點數之差的絕對值.
(1)求X的分布列及期望;
(2)記“f(x)=2Xx+4在[-3,-1]上存在x0,使f(x0)=0”為事件A,求事件A的概率.
解 (1)設游客游覽甲、乙、丙景點分別記為事件A1、A2、A3,已知A1、A2、 A3相互獨立,且P(A1)=0.4,P(A2)=0.5,P(A3)=0.6.游
15、客游覽的景點數可能 取值為0、1、2、3,相應的游客沒有游覽的景點數可能取值為3、2、1、0,
所以X的可能取值為1、3.則P(X=3)=P(A1A2A3)+P( )
=P(A1)·P(A2)·P(A3)+P()·P()·P()
=2×0.4×0.5×0.6=0.24.
P(X=1)=1-0.24=0.76.
所以分布列為:
X
1
3
P
0.76
0.24
∴E(X)=1×0.76+3×0.24=1.48.
(2)∵f(x)=2Xx+4在[-3,-1]上存在x0,使得f(x0)=0,
∴f(-3)·f(-1)≤0,即(-6X+4)(-2X+4)≤0,
解得:≤X≤2.
∴P(A)=P=P(X=1)=0.76.