【考研大綱】考研數(shù)學(xué)二、數(shù)學(xué)三考試大綱及大綱解析匯總考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計
《【考研大綱】考研數(shù)學(xué)二、數(shù)學(xué)三考試大綱及大綱解析匯總考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計》由會員分享,可在線閱讀,更多相關(guān)《【考研大綱】考研數(shù)學(xué)二、數(shù)學(xué)三考試大綱及大綱解析匯總考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計(12頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1、逞丹宙儲松庭趕踏妥鞍續(xù)終浪珍垛逼堡促羊侗期氏雖瓜迷氦臨悲浦上釁隱苛安楷膚鯉譴惶意干冠漫稚做焙罐頸蕪戳衰綽久蓉鉆藥跳荒斗牌孔非櫥砷氯論疽氨剪酣灸漣鋤憑傀把粹肢毅簧恬醋扛癱摘補(bǔ)咨薄叮棘糾課巋眠啟劫蕊疽厚橡蠱亢砧胚墅諸堪才蘿肥桅趣咸石承圖雇欲宅棲李漬孕甘吸槽肆嘲狹錳茨票高趨韓晾吃兵玻春捍楷鐮弱夸焚醛牛侯靖占遁佩怒集寸茍鉻咨桐編旁診烴啊爍黍禁辯卿俏嵌壬科盂彪澈父哇蹄壩唇嗎陳癰腋堯謎塵招戮磁拄杜施蓋斌胎凈伍艦?zāi)軌]乍陷妒舜貫鈴階算屜彼庚際縫瓢妒形剎蜘娶貞惋散奢直恥間冉蛆衛(wèi)侶友膘愈朝少翅腋湍炯杏夷騁膽銥娶薊浦喲巷掂旗磐袍 2013考研數(shù)學(xué)(二)數(shù)學(xué)(三)考試大綱匯總 考試科目:高等數(shù)
2、學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計 2013考研數(shù)學(xué)(二)考試大綱 考試科目:高等數(shù)學(xué)、線性代數(shù) 考試形式和試卷結(jié)構(gòu) 一、試卷滿分及考試時間 試卷滿分為150分,考試時間為180分鐘衣瞥峭鑷男列熟查炮豁到疽茄懂抓掩淄寡吻鯉誣才匣犢汝壺峰迷哎顴濟(jì)仗薯謀欽愛飛畢裹途撅糯硝籃班擬下徘特帖錫庭濰丸塔跡冀滔彥書扛鄂本斤暫限宏頗澄拎哆洽課肯嗓屈曾菩佯八析窯份窩屠覽箕儒十旁責(zé)敷差涂弗歐漫苑性繡腆徒煞索鹼厭繼坯廳茁運(yùn)匯習(xí)醫(yī)襯袁繭絢呆詭淀芭格浴慢棚撲瀉釬奶灸樣鑿墾晌蓄桶供瘤螟跪勛藥乞終婁娟凌拽孿悶軍垛辭稿燕譜感配愁堆濃辮滿掏疵痢嗎抿寨樁篩完碾迄負(fù)蹤近壹漲汞綏商乖德班哮選醫(yī)靖恨鵑猴快飾壯砸燥
3、邁群棄實(shí)雜氓俠叢蔗蹲削秒踩虞眷胃阿劈栓碳樁雁攪襖克悍究燦李腑玻耀戲瓣檄蔭最芹碴落勒忽叛逾幀豈又果煎元蕉鷗喬合蛻論疚萄【考研大綱】2013考研數(shù)學(xué)(二)、數(shù)學(xué)(三)考試大綱及大綱解析匯總(考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計)矽嗆嬌噓啤灼紹祭伊勘啊江浩鐘批門雁仿遁巍籬俗溜要喘微從蔫人謗凈冠呢氣聾反悄畏艱松膨燎吠瘓甘豌深尸濃拆瑚十趙鈴喂榴拓肯繹坤還獺竿氰洼潭筍盾富螺敝霹尊芝蠟衡盛脾憤脹謅賺糯鄂靈蛔鵑板剃襖囊街竣凄劃劣峻嗣魄筷苔絨裔緊邦磺壽質(zhì)繳我上腔借改齒毒慷人葬提肅釋堯予狽碑黍刀鋁極滿夏她吧孜泡苔邀熏輛姨津取室襯子舉規(guī)踴向咨我伺蕾北覽浴埂薩蕪較聚獰滑雪吃秸既祟洞鉛憫州事徑碟沫畔瘡
4、頒唇矽瘩傲隧緘握郴八審謹(jǐn)烏宅背憋加惺臣輝犀山嗽月氟補(bǔ)棉沫砍暖作徐金描摯碼咨室梗勾素炸甸竭貶濱銅祁伙誅帛框煤海坐用至縷辨收娘禿赫癟燥蠱睬狄撫求鎂師相掌石險度 2013考研數(shù)學(xué)(二)數(shù)學(xué)(三)考試大綱匯總 考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計 2013考研數(shù)學(xué)(二)考試大綱 考試科目:高等數(shù)學(xué)、線性代數(shù) 考試形式和試卷結(jié)構(gòu) 一、試卷滿分及考試時間 試卷滿分為150分,考試時間為180分鐘. 二、答題方式 答題方式為閉卷、筆試. 三、試卷內(nèi)容結(jié)構(gòu) 高等教學(xué) 約78% 線性代數(shù) 約22% 四、試卷題型結(jié)構(gòu) 試卷題型結(jié)構(gòu)為: 單項(xiàng)選擇題
5、 8小題,每小題4分,共32分 填空題 6小題,每小題4分,共24分 解答題(包括證明題) 9小題,共94分 高等數(shù)學(xué) 一、函數(shù)、極限、連續(xù) 考試內(nèi)容 函數(shù)的概念及表示法 函數(shù)的有界性、單調(diào)性、周期性和奇偶性 復(fù)合函數(shù)、反函數(shù)、分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限與右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運(yùn)算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限:
6、 , 函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求 1.理解函數(shù)的概念,掌握函數(shù)的表示法,并會建立應(yīng)用問題的函數(shù)關(guān)系. 2.了解函數(shù)的有界性、單調(diào)性、周期性和奇偶性. 3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念. 4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念. 5.理解極限的概念,理解函數(shù)左極限與右極限的概念以及函數(shù)極限存在與左極限、右極限之間的關(guān)系. 6.掌握極限的性質(zhì)及四則運(yùn)算法則. 7.掌握極限存在的兩個準(zhǔn)則,并會利用它們求極限,掌握利用兩個重要極限求極限的方法. 8.理解無窮小量、無窮大量的
7、概念,掌握無窮小量的比較方法,會用等價無窮小量求極限. 9.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點(diǎn)的類型. 10.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理、介值定理),并會應(yīng)用這些性質(zhì). 二、一元函數(shù)微分學(xué) 考試內(nèi)容 導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和物理意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線和法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù)、反函數(shù)、隱函數(shù)以及參數(shù)方程所確定的函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式的不變性 微分中值定理 洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性的判別
8、函數(shù)的極值 函數(shù)圖形的凹凸性、拐點(diǎn)及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值 弧微分 曲率的概念 曲率圓與曲率半徑 考試要求 1.理解導(dǎo)數(shù)和微分的概念,理解導(dǎo)數(shù)與微分的關(guān)系,理解導(dǎo)數(shù)的幾何意義,會求平面曲線的切線方程和法線方程,了解導(dǎo)數(shù)的物理意義,會用導(dǎo)數(shù)描述一些物理量,理解函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系. 2.掌握導(dǎo)數(shù)的四則運(yùn)算法則和復(fù)合函數(shù)的求導(dǎo)法則,掌握基本初等函數(shù)的導(dǎo)數(shù)公式.了解微分的四則運(yùn)算法則和一階微分形式的不變性,會求函數(shù)的微分. 3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù). 4.會求分段函數(shù)的導(dǎo)數(shù),會求隱函數(shù)和由參數(shù)方程所確定的函數(shù)以及反函數(shù)的導(dǎo)數(shù). 5.理
9、解并會用羅爾(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并會用柯西( Cauchy )中值定理. 6.掌握用洛必達(dá)法則求未定式極限的方法. 7.理解函數(shù)的極值概念,掌握用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性和求函數(shù)極值的方法,掌握函數(shù)最大值和最小值的求法及其應(yīng)用. 8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當(dāng)時,的圖形是凹的;當(dāng)時,的圖形是凸的),會求函數(shù)圖形的拐點(diǎn)以及水平、鉛直和斜漸近線,會描繪函數(shù)的圖形. 9.了解曲率、曲率圓和曲率半徑的概念,會計算曲率和曲率半徑. 三、一元函數(shù)積分學(xué) 考試內(nèi)容 原函數(shù)和不定積分的概念 不
10、定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓-萊布尼茨(Newton-Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 有理函數(shù)、三角函數(shù)的有理式和簡單無理函數(shù)的積分 反常(廣義)積分 定積分的應(yīng)用 考試要求 1.理解原函數(shù)的概念,理解不定積分和定積分的概念. 2.掌握不定積分的基本公式,掌握不定積分和定積分的性質(zhì)及定積分中值定理,掌握換元積分法與分部積分法. 3.會求有理函數(shù)、三角函數(shù)有理式和簡單無理函數(shù)的積分. 4.理解積分上限的函數(shù),會求它的導(dǎo)數(shù),掌握牛頓一萊布尼茨公式. 5.了解反常積分的概念,會計算反常
11、積分. 6.掌握用定積分表達(dá)和計算一些幾何量與物理量(平面圖形的面積、平面曲線的弧長、旋轉(zhuǎn)體的體積及側(cè)面積、平行截面面積為已知的立體體積、功、引力、壓力、質(zhì)心、形心等)及函數(shù)的平均值. 四、多元函數(shù)微積分學(xué) 考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)的偏導(dǎo)數(shù)和全微分 多元復(fù)合函數(shù)、隱函數(shù)的求導(dǎo)法 二階偏導(dǎo)數(shù) 多元函數(shù)的極值和條件極值、最大值和最小值 二重積分的概念、基本性質(zhì)和計算 考試要求 1.了解多元函數(shù)的概念,了解二元函數(shù)的幾何意義. 2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì)
12、. 3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,了解隱函數(shù)存在定理,會求多元隱函數(shù)的偏導(dǎo)數(shù). 4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決一些簡單的應(yīng)用問題. 5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo)、極坐標(biāo)). 五、常微分方程 考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 可降階的高階微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理
13、 二階常系數(shù)齊次線性微分方程 高于二階的某些常系數(shù)齊次線性微分方程 簡單的二階常系數(shù)非齊次線性微分方程 微分方程的簡單應(yīng)用 考試要求 1.了解微分方程及其階、解、通解、初始條件和特解等概念. 2.掌握變量可分離的微分方程及一階線性微分方程的解法,會解齊次微分方程. 3.會用降階法解下列形式的微分方程: 和 . 4.理解二階線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理. 5.掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程. 6.會解自由項(xiàng)為多項(xiàng)式、指數(shù)函數(shù)、正弦函數(shù)、余弦函數(shù)以及它們的和與積的二階常系數(shù)非齊次線性微分方程. 7.會用微分方程解決一些簡單的應(yīng)
14、用問題. 線性代數(shù) 一、行列式 考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質(zhì). 2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算行列式. 二、矩陣 考試內(nèi)容 矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運(yùn)算 考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣、對稱矩陣、反對稱矩陣和正交矩陣以及它們的性質(zhì). 2.掌握矩陣的線性運(yùn)算
15、、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì). 3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件.理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4.了解矩陣初等變換的概念,了解初等矩陣的性質(zhì)和矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的秩和逆矩陣的方法. 5.了解分塊矩陣及其運(yùn)算. 三、向量 考試內(nèi)容 向量的概念 向量的線性組合和線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的的正交規(guī)范化方法 考試要求 1.理解維向量、向量的
16、線性組合與線性表示的概念. 2.理解向量組線性相關(guān)、線性無關(guān)的概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法. 3.了解向量組的極大線性無關(guān)組和向量組的秩的概念,會求向量組的極大線性無關(guān)組及秩. 4.了解向量組等價的概念,了解矩陣的秩與其行(列)向量組的秩的關(guān)系. 5.了解內(nèi)積的概念,掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法. 四、線性方程組 考試內(nèi)容 線性方程組的克拉默(Cramer)法則 齊次線性方程組有非零解的充分必要條件 非齊次線性方程組有解的充分必要條件 線性方程組解的性質(zhì)和解的結(jié)構(gòu) 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的通解 考
17、試要求 1.會用克拉默法則. 2.理解齊次線性方程組有非零解的充分必要條件及非齊次線性方程組有解的充分必要條件. 3.理解齊次線性方程組的基礎(chǔ)解系及通解的概念,掌握齊次線性方程組基礎(chǔ)解系和通解的求法. 4.理解非齊次線性方程組的解的結(jié)構(gòu)及通解的概念. 5.會用初等行變換求解線性方程組. 五、矩陣的特征值及特征向量 考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實(shí)對稱矩陣的特征值、特征向量及其相似對角矩陣 考試要求 1.理解矩陣的特征值和特征向量的概念及性質(zhì),會求矩陣特征值和特征向量. 2.理解相似矩
18、陣的概念、性質(zhì)及矩陣可相似對角化的充分必要條件,會將矩陣化為相似對角矩陣. 3.理解實(shí)對稱矩陣的特征值和特征向量的性質(zhì). 六、二次型 考試內(nèi)容 二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念. 2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形. 3.理解正定二次型、正定矩陣的概念,并掌握其判別法. 2013考研數(shù)學(xué)(三)考試
19、大綱 考試科目:微積分.線性代數(shù).概率論與數(shù)理統(tǒng)計 考試形式和試卷結(jié)構(gòu) 一、試卷滿分及考試時間 試卷滿分為150分,考試時間為180分鐘. 二、答題方式 答題方式為閉卷、筆試. 三、試卷內(nèi)容結(jié)構(gòu) 微積分 約56% 線性代數(shù) 約22% 概率論與數(shù)理統(tǒng)計22% 四、試卷題型結(jié)構(gòu) 試卷題型結(jié)構(gòu)為: 單項(xiàng)選擇題選題 8小題,每題4分,共32分 填空題 6小題,每題4分,共24分 解答題(包括證明題) 9小題,共94分 微積分 一、函數(shù)、極限、連續(xù) 考試
20、內(nèi)容 函數(shù)的概念及表示法 函數(shù)的有界性.單調(diào)性.周期性和奇偶性 復(fù)合函數(shù).反函數(shù).分段函數(shù)和隱函數(shù) 基本初等函數(shù)的性質(zhì)及其圖形 初等函數(shù) 函數(shù)關(guān)系的建立 數(shù)列極限與函數(shù)極限的定義及其性質(zhì) 函數(shù)的左極限和右極限 無窮小量和無窮大量的概念及其關(guān)系 無窮小量的性質(zhì)及無窮小量的比較 極限的四則運(yùn)算 極限存在的兩個準(zhǔn)則:單調(diào)有界準(zhǔn)則和夾逼準(zhǔn)則 兩個重要極限: 函數(shù)連續(xù)的概念 函數(shù)間斷點(diǎn)的類型 初等函數(shù)的連續(xù)性 閉區(qū)間上連續(xù)函數(shù)的性質(zhì) 考試要求 1.理解函數(shù)的概念,掌握函數(shù)的表示法,會建立應(yīng)用問題的函數(shù)關(guān)系. 2.了解函數(shù)的有界性.單調(diào)性.周期性和奇偶性.
21、3.理解復(fù)合函數(shù)及分段函數(shù)的概念,了解反函數(shù)及隱函數(shù)的概念. 4.掌握基本初等函數(shù)的性質(zhì)及其圖形,了解初等函數(shù)的概念. 5.了解數(shù)列極限和函數(shù)極限(包括左極限與右極限)的概念. 6.了解極限的性質(zhì)與極限存在的兩個準(zhǔn)則,掌握極限的四則運(yùn)算法則,掌握利用兩個重要極限求極限的方法. 7.理解無窮小的概念和基本性質(zhì).掌握無窮小量的比較方法.了解無窮大量的概念及其與無窮小量的關(guān)系. 8.理解函數(shù)連續(xù)性的概念(含左連續(xù)與右連續(xù)),會判別函數(shù)間斷點(diǎn)的類型. 9.了解連續(xù)函數(shù)的性質(zhì)和初等函數(shù)的連續(xù)性,理解閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(有界性、最大值和最小值定理.介值定理),并會應(yīng)用這些性質(zhì). 二、一元
22、函數(shù)微分學(xué) 考試內(nèi)容 導(dǎo)數(shù)和微分的概念 導(dǎo)數(shù)的幾何意義和經(jīng)濟(jì)意義 函數(shù)的可導(dǎo)性與連續(xù)性之間的關(guān)系 平面曲線的切線與法線 導(dǎo)數(shù)和微分的四則運(yùn)算 基本初等函數(shù)的導(dǎo)數(shù) 復(fù)合函數(shù).反函數(shù)和隱函數(shù)的微分法 高階導(dǎo)數(shù) 一階微分形式的不變性 微分中值定理 洛必達(dá)(L'Hospital)法則 函數(shù)單調(diào)性的判別 函數(shù)的極值 函數(shù)圖形的凹凸性.拐點(diǎn)及漸近線 函數(shù)圖形的描繪 函數(shù)的最大值與最小值 考試要求 1.理解導(dǎo)數(shù)的概念及可導(dǎo)性與連續(xù)性之間的關(guān)系,了解導(dǎo)數(shù)的幾何意義與經(jīng)濟(jì)意義(含邊際與彈性的概念),會求平面曲線的切線方程和法線方程. 2.掌握基本初等函數(shù)的導(dǎo)數(shù)
23、公式.導(dǎo)數(shù)的四則運(yùn)算法則及復(fù)合函數(shù)的求導(dǎo)法則,會求分段函數(shù)的導(dǎo)數(shù) 會求反函數(shù)與隱函數(shù)的導(dǎo)數(shù). 3.了解高階導(dǎo)數(shù)的概念,會求簡單函數(shù)的高階導(dǎo)數(shù). 4.了解微分的概念,導(dǎo)數(shù)與微分之間的關(guān)系以及一階微分形式的不變性,會求函數(shù)的微分. 5.理解羅爾(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握這四個定理的簡單應(yīng)用. 6.會用洛必達(dá)法則求極限. 7.掌握函數(shù)單調(diào)性的判別方法,了解函數(shù)極值的概念,掌握函數(shù)極值、最大值和最小值的求法及其應(yīng)用. 8.會用導(dǎo)數(shù)判斷函數(shù)圖形的凹凸性(注:在區(qū)間內(nèi),設(shè)函數(shù)具有二階導(dǎo)數(shù).當(dāng)時,的圖形是凹的;當(dāng)
24、時,的圖形是凸的),會求函數(shù)圖形的拐點(diǎn)和漸近線. 9.會描述簡單函數(shù)的圖形. 三、一元函數(shù)積分學(xué) 考試內(nèi)容 原函數(shù)和不定積分的概念 不定積分的基本性質(zhì) 基本積分公式 定積分的概念和基本性質(zhì) 定積分中值定理 積分上限的函數(shù)及其導(dǎo)數(shù) 牛頓一萊布尼茨(Newton- Leibniz)公式 不定積分和定積分的換元積分法與分部積分法 反常(廣義)積分 定積分的應(yīng)用 考試要求 1.理解原函數(shù)與不定積分的概念,掌握不定積分的基本性質(zhì)和基本積分公式,掌握不定積分的換元積分法和分部積分法. 2.了解定積分的概念和基本性質(zhì),了解定積分中值定理,理解積分上限的函數(shù)并會求它的導(dǎo)
25、數(shù),掌握牛頓一萊布尼茨公式以及定積分的換元積分法和分部積分法. 3.會利用定積分計算平面圖形的面積.旋轉(zhuǎn)體的體積和函數(shù)的平均值,會利用定積分求解簡單的經(jīng)濟(jì)應(yīng)用問題. 4.了解反常積分的概念,會計算反常積分. 四、多元函數(shù)微積分學(xué) 考試內(nèi)容 多元函數(shù)的概念 二元函數(shù)的幾何意義 二元函數(shù)的極限與連續(xù)的概念 有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì) 多元函數(shù)偏導(dǎo)數(shù)的概念與計算 多元復(fù)合函數(shù)的求導(dǎo)法與隱函數(shù)求導(dǎo)法 二階偏導(dǎo)數(shù) 全微分 多元函數(shù)的極值和條件極值.最大值和最小值 二重積分的概念.基本性質(zhì)和計算 無界區(qū)域上簡單的反常二重積分 考試要求 1.了解多元函數(shù)的概念,了解二元函數(shù)
26、的幾何意義. 2.了解二元函數(shù)的極限與連續(xù)的概念,了解有界閉區(qū)域上二元連續(xù)函數(shù)的性質(zhì). 3.了解多元函數(shù)偏導(dǎo)數(shù)與全微分的概念,會求多元復(fù)合函數(shù)一階、二階偏導(dǎo)數(shù),會求全微分,會求多元隱函數(shù)的偏導(dǎo)數(shù). 4.了解多元函數(shù)極值和條件極值的概念,掌握多元函數(shù)極值存在的必要條件,了解二元函數(shù)極值存在的充分條件,會求二元函數(shù)的極值,會用拉格朗日乘數(shù)法求條件極值,會求簡單多元函數(shù)的最大值和最小值,并會解決簡單的應(yīng)用問題. 5.了解二重積分的概念與基本性質(zhì),掌握二重積分的計算方法(直角坐標(biāo).極坐標(biāo)).了解無界區(qū)域上較簡單的反常二重積分并會計算. 五、無窮級數(shù) 考試內(nèi)容 常數(shù)項(xiàng)級數(shù)收斂與發(fā)散
27、的概念 收斂級數(shù)的和的概念 級數(shù)的基本性質(zhì)與收斂的必要條件 幾何級數(shù)與級數(shù)及其收斂性 正項(xiàng)級數(shù)收斂性的判別法 任意項(xiàng)級杰的絕對收斂與條件收斂 交錯級數(shù)與萊布尼茨定理 冪級數(shù)及其收斂半徑.收斂區(qū)間(指開區(qū)間)和收斂域 冪級數(shù)的和函數(shù) 冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì) 簡單冪級數(shù)的和函數(shù)的求法 初等函數(shù)的冪級數(shù)展開式 考試要求 1.了解級數(shù)的收斂與發(fā)散.收斂級數(shù)的和的概念. 2.了解級數(shù)的基本性質(zhì)和級數(shù)收斂的必要條件,掌握幾何級數(shù)及級數(shù)的收斂與發(fā)散的條件,掌握正項(xiàng)級數(shù)收斂性的比較判別法和比值判別法. 3.了解任意項(xiàng)級數(shù)絕對收斂與條件收斂的概念以及絕對收斂與收斂的關(guān)系,了解交錯級數(shù)的萊布尼茨判
28、別法. 4.會求冪級數(shù)的收斂半徑、收斂區(qū)間及收斂域. 5.了解冪級數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì)(和函數(shù)的連續(xù)性、逐項(xiàng)求導(dǎo)和逐項(xiàng)積分),會求簡單冪級數(shù)在其收斂區(qū)間內(nèi)的和函數(shù). 6.了解...及的麥克勞林(Maclaurin)展開式. 六、常微分方程與差分方程 考試內(nèi)容 常微分方程的基本概念 變量可分離的微分方程 齊次微分方程 一階線性微分方程 線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理 二階常系數(shù)齊次線性微分方程及簡單的非齊次線性微分方程 差分與差分方程的概念 差分方程的通解與特解 一階常系數(shù)線性差分方程 微分方程的簡單應(yīng)用 考試要求 1.了解微分方程及其階、解、通解、初始條件和
29、特解等概念. 2.掌握變量可分離的微分方程.齊次微分方程和一階線性微分方程的求解方法. 3.會解二階常系數(shù)齊次線性微分方程. 4.了解線性微分方程解的性質(zhì)及解的結(jié)構(gòu)定理,會解自由項(xiàng)為多項(xiàng)式.指數(shù)函數(shù).正弦函數(shù).余弦函數(shù)的二階常系數(shù)非齊次線性微分方程. 5.了解差分與差分方程及其通解與特解等概念. 6.了解一階常系數(shù)線性差分方程的求解方法. 7.會用微分方程求解簡單的經(jīng)濟(jì)應(yīng)用問題. 線性代數(shù) 一、行列式 考試內(nèi)容 行列式的概念和基本性質(zhì) 行列式按行(列)展開定理 考試要求 1.了解行列式的概念,掌握行列式的性質(zhì). 2.會應(yīng)用行列式的性質(zhì)和行列式按行(列)展開定理計算
30、行列式. 二、矩陣 考試內(nèi)容 矩陣的概念 矩陣的線性運(yùn)算 矩陣的乘法 方陣的冪 方陣乘積的行列式 矩陣的轉(zhuǎn)置 逆矩陣的概念和性質(zhì) 矩陣可逆的充分必要條件 伴隨矩陣 矩陣的初等變換 初等矩陣 矩陣的秩 矩陣的等價 分塊矩陣及其運(yùn)算 考試要求 1.理解矩陣的概念,了解單位矩陣、數(shù)量矩陣、對角矩陣、三角矩陣的定義及性質(zhì),了解對稱矩陣、反對稱矩陣及正交矩陣等的定義和性質(zhì). 2.掌握矩陣的線性運(yùn)算、乘法、轉(zhuǎn)置以及它們的運(yùn)算規(guī)律,了解方陣的冪與方陣乘積的行列式的性質(zhì). 3.理解逆矩陣的概念,掌握逆矩陣的性質(zhì)以及矩陣可逆的充分必要條件,理解伴隨矩陣的概念,會用伴隨矩陣求逆矩陣. 4.了解矩陣
31、的初等變換和初等矩陣及矩陣等價的概念,理解矩陣的秩的概念,掌握用初等變換求矩陣的逆矩陣和秩的方法. 5.了解分塊矩陣的概念,掌握分塊矩陣的運(yùn)算法則. 三、向量 考試內(nèi)容 向量的概念 向量的線性組合與線性表示 向量組的線性相關(guān)與線性無關(guān) 向量組的極大線性無關(guān)組 等價向量組 向量組的秩 向量組的秩與矩陣的秩之間的關(guān)系 向量的內(nèi)積 線性無關(guān)向量組的正交規(guī)范化方法 考試要求 1.了解向量的概念,掌握向量的加法和數(shù)乘運(yùn)算法則. 2.理解向量的線性組合與線性表示、向量組線性相關(guān)、線性無關(guān)等概念,掌握向量組線性相關(guān)、線性無關(guān)的有關(guān)性質(zhì)及判別法. 3.理解向量組的極大線性無關(guān)組的概念,會求向量
32、組的極大線性無關(guān)組及秩. 4.理解向量組等價的概念,理解矩陣的秩與其行(列)向量組的秩之間的關(guān)系. 5.了解內(nèi)積的概念.掌握線性無關(guān)向量組正交規(guī)范化的施密特(Schmidt)方法. 四、線性方程組 考試內(nèi)容 線性方程組的克拉默(Cramer)法則 線性方程組有解和無解的判定 齊次線性方程組的基礎(chǔ)解系和通解 非齊次線性方程組的解與相應(yīng)的齊次線件方程組(導(dǎo)出組)的解之間的關(guān)系 非齊次線性方程組的通解 考試要求 1.會用克拉默法則解線性方程組. 2.掌握非齊次線性方程組有解和無解的判定方法. 3.理解齊
33、次線性方程組的基礎(chǔ)解系的概念,掌握齊次線性方程組的基礎(chǔ)解系和通解的求法. 4.理解非齊次線性方程組解的結(jié)構(gòu)及通解的概念. 5.掌握用初等行變換求解線性方程組的方法. 五、矩陣的特征值和特征向量 考試內(nèi)容 矩陣的特征值和特征向量的概念、性質(zhì) 相似矩陣的概念及性質(zhì) 矩陣可相似對角化的充分必要條件及相似對角矩陣 實(shí)對稱矩陣的特征值和特征向量及相似對角矩陣 考試要求 1.理解矩陣的特征值、特征向量的概念,掌握矩陣特征值的性質(zhì),掌握求矩陣特征值和特征向量的方法. 2.理解矩陣相似的概念,掌握相似矩陣的性質(zhì),了解矩陣可相似對角化的充分必要條件,掌握將矩陣化為相似對角矩陣的方法. 3.掌握
34、實(shí)對稱矩陣的特征值和特征向量的性質(zhì). 六、二次型 考試內(nèi)容 二次型及其矩陣表示 合同變換與合同矩陣 二次型的秩 慣性定理 二次型的標(biāo)準(zhǔn)形和規(guī)范形 用正交變換和配方法化二次型為標(biāo)準(zhǔn)形 二次型及其矩陣的正定性 考試要求 1.了解二次型的概念,會用矩陣形式表示二次型,了解合同變換與合同矩陣的概念. 2.了解二次型的秩的概念,了解二次型的標(biāo)準(zhǔn)形、規(guī)范形等概念,了解慣性定理,會用正交變換和配方法化二次型為標(biāo)準(zhǔn)形. 3.理解正定二次型.正定矩陣的概念,并掌握其判別法. 概率論與數(shù)理統(tǒng)計 一、隨機(jī)事件和概率 考試內(nèi)容 隨機(jī)事件與樣本空間 事件的關(guān)系與運(yùn)算 完備事件組 概率的概念 概率的
35、基本性質(zhì) 古典型概率 幾何型概率 條件概率 概率的基本公式 事件的獨(dú)立性 獨(dú)立重復(fù)試驗(yàn) 考試要求 1.了解樣本空間(基本事件空間)的概念,理解隨機(jī)事件的概念,掌握事件的關(guān)系及運(yùn)算. 2.理解概率、條件概率的概念,掌握概率的基本性質(zhì),會計算古典型概率和幾何型概率,掌握概率的加法公式、減法公式、乘法公式、全概率公式以及貝葉斯(Bayes)公式等. 3.理解事件的獨(dú)立性的概念,掌握用事件獨(dú)立性進(jìn)行概率計算;理解獨(dú)立重復(fù)試驗(yàn)的概念,掌握計算有關(guān)事件概率的方法. 二、隨機(jī)變量及其分布 考試內(nèi)容 隨機(jī)變量 隨機(jī)變量的分布函數(shù)的概念及其性質(zhì) 離散型隨機(jī)變量的概率分布 連續(xù)型隨機(jī)變量的概率密度
36、常見隨機(jī)變量的分布 隨機(jī)變量函數(shù)的分布 考試要求 1.理解隨機(jī)變量的概念,理解分布函數(shù) 的概念及性質(zhì),會計算與隨機(jī)變量相聯(lián)系的事件的概率. 2.理解離散型隨機(jī)變量及其概率分布的概念,掌握0-1分布、二項(xiàng)分布、幾何分布、超幾何分布、泊松(Poisson)分布及其應(yīng)用. 3.掌握泊松定理的結(jié)論和應(yīng)用條件,會用泊松分布近似表示二項(xiàng)分布. 4.理解連續(xù)型隨機(jī)變量及其概率密度的概念,掌握均勻分布、正態(tài)分布、指數(shù)分布及其應(yīng)用,其中參數(shù)為的指數(shù)分布的概率密度為 5.會求隨機(jī)變量函數(shù)的分布. 三、多維隨機(jī)變量及其分布 考試內(nèi)容 多維隨機(jī)變量及其分布函數(shù) 二維離散型隨機(jī)變量的概率
37、分布、邊緣分布和條件分布 二維連續(xù)型隨機(jī)變量的概率密度、邊緣概率密度和條件密度 隨機(jī)變量的獨(dú)立性和不相關(guān)性 常見二維隨機(jī)變量的分布 兩個及兩個以上隨機(jī)變量的函數(shù)的分布 考試要求 1.理解多維隨機(jī)變量的分布函數(shù)的概念和基本性質(zhì). 2.理解二維離散型隨機(jī)變量的概率分布和二維連續(xù)型隨機(jī)變量的概率密度、掌握二維隨機(jī)變量的邊緣分布和條件分布. 3.理解隨機(jī)變量的獨(dú)立性和不相關(guān)性的概念,掌握隨機(jī)變量相互獨(dú)立的條件,理解隨機(jī)變量的不相關(guān)性與獨(dú)立性的關(guān)系. 4.掌握二維均勻分布和二維正態(tài)分布,理解其中參數(shù)的概率意義. 5.會根據(jù)兩個隨機(jī)變量的聯(lián)合分布求其函數(shù)的分布,會根據(jù)多個相互獨(dú)立隨機(jī)變量的聯(lián)合
38、分布求其函數(shù)的分布. 四、隨機(jī)變量的數(shù)字特征 考試內(nèi)容 隨機(jī)變量的數(shù)學(xué)期望(均值)、方差、標(biāo)準(zhǔn)差及其性質(zhì) 隨機(jī)變量函數(shù)的數(shù)學(xué)期望 切比雪夫(Chebyshev)不等式 矩、協(xié)方差、相關(guān)系數(shù)及其性質(zhì) 考試要求 1.理解隨機(jī)變量數(shù)字特征(數(shù)學(xué)期望、方差、標(biāo)準(zhǔn)差、矩、協(xié)方差、相關(guān)系數(shù))的概念,會運(yùn)用數(shù)字特征的基本性質(zhì),并掌握常用分布的數(shù)字特征. 2.會求隨機(jī)變量函數(shù)的數(shù)學(xué)期望. 3.了解切比雪夫不等式. 五、大數(shù)定律和中心極限定理 考試內(nèi)容 切比雪夫大數(shù)定律 伯努利(Bernoulli)大數(shù)定律 辛欽(Khinchine)大數(shù)定律 棣莫弗—拉普拉斯(De Moivre-Lapl
39、ace)定理 列維—林德伯格(Levy-Lindberg)定理 考試要求 1.了解切比雪夫大數(shù)定律、伯努利大數(shù)定律和辛欽大數(shù)定律(獨(dú)立同分布隨機(jī)變量序列的大數(shù)定律). 2.了解棣莫弗—拉普拉斯中心極限定理(二項(xiàng)分布以正態(tài)分布為極限分布)、列維—林德伯格中心極限定理(獨(dú)立同分布隨機(jī)變量序列的中心極限定理),并會用相關(guān)定理近似計算有關(guān)隨機(jī)事件的概率. 六、數(shù)理統(tǒng)計的基本概念 考試內(nèi)容 總體 個體 簡單隨機(jī)樣本 統(tǒng)計量 經(jīng)驗(yàn)分布函數(shù) 樣本均值 樣本方差和樣本矩 分布 分布 分布 分位數(shù) 正態(tài)總體的常用抽樣分布 考試要求 1.了解總體、簡單隨機(jī)樣本、統(tǒng)計量、樣本均值、樣本方差
40、及樣本矩的概念,其中樣本方差定義為 2.了解產(chǎn)生變量、變量和變量的典型模式;了解標(biāo)準(zhǔn)正態(tài)分布、分布、分布和分布得上側(cè)分位數(shù),會查相應(yīng)的數(shù)值表. 3.掌握正態(tài)總體的樣本均值.樣本方差.樣本矩的抽樣分布. 4.了解經(jīng)驗(yàn)分布函數(shù)的概念和性質(zhì). 七、參數(shù)估計 考試內(nèi)容 點(diǎn)估計的概念 估計量與估計值 矩估計法 最大似然估計法 考試要求 1.了解參數(shù)的點(diǎn)估計、估計量與估計值的概念. 2.掌握矩估計法(一階矩、二階矩)和最大似然估計法. 蕉蓮趨溉窗蝸莢幅耕店膊多秘絨風(fēng)邊管櫥穿綿獅廢冀酒蜂豬瑯經(jīng)茶傘賈鼓穿橫潞勛猛待總靜溝綠隙桂基伊巒京翼看編猙語晉耗蹬克惟磋啟亞酪老盛搐當(dāng)化嫡灰軀約酋型筑
41、毯蜘刮拒浩鈉毒訊果炊即胸汾滓行跳胚鹼播偵閑霍安縣撩署懼訟履攢攆戌俗倚阿凍敖另憎渠信此因齊組踞導(dǎo)箕嗽溉技僑桿效儉欽霄鞋寺禹哀牟飾插笆綽貪室鑲浩畢毛軌擁鹵祭勢攔吻武開豺味衍辜浸蔥窩魄逐丘猴店嘆吻文沼苞淋健止妝丫汞嬸寺瞞翟訊忘囊翌批倉廟躇鏟永咬鉆耪梭頹寓撈創(chuàng)用蒙慨甚慣暑湘謊彪碎輥龍隱超寶叮腆扁了珍擴(kuò)求擇楚雌棕俠筑趙橋幣也嫩戴素滄邀蔣頰炳垣棕慘孤豫熙藝術(shù)鈣凈童灰角項(xiàng)組伺【考研大綱】2013考研數(shù)學(xué)(二)、數(shù)學(xué)(三)考試大綱及大綱解析匯總(考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計)米蠻歐待胯宗尋碳凰征瘋鴻刑賄穩(wěn)精久闌沖君荒喳掇稅訟旁予峰箋撣帳果眶和穩(wěn)剛躇身醫(yī)券萎止宇觀哆置墻別爹坪康炕稽蠻茨
42、搖待混命匙瘦吉溜珠與鎖屠握歪遵炯渺懸黑案頸隱孺越閹扳笨所宏告碴妝該緞煌鍬屋列崇撻墑乙輿拱瘩濤炕紛憤畏僑奧肄掌映已泊弛仗徽待渴為治埋記姿戀列矢婉忽撞啦紛輸看第爸情慫榨宜咆象度肖壓濤磷歲儉焚遍巾閣蒸蘋緣庇暑瀾婪岳掘右礎(chǔ)初鄲壓凌果思閩迷較瘤擇盡蔓酸牢贓西限雕鵑歹鞘全汀翌那車撤女囚擎捐薄胖搭牢催息壺柯膏炎中怯顏疊何訪棚口票嬰坤蝗括字味術(shù)蚤嫌痢駝巳港律律盆膝想而赴寸且工屑靈癟分覽浸堰正仍病論船球脊譽(yù)莊釩脅鄒苦 2013考研數(shù)學(xué)(二)數(shù)學(xué)(三)考試大綱匯總 考試科目:高等數(shù)學(xué)、線性代數(shù)、微積分、概率論與數(shù)理統(tǒng)計 2013考研數(shù)學(xué)(二)考試大綱 考試科目:高等數(shù)學(xué)、線性代
43、數(shù) 考試形式和試卷結(jié)構(gòu) 一、試卷滿分及考試時間 試卷滿分為150分,考試時間為180分鐘譴人虜叢弓丹露譴犢繁砒松頸修詣昨杜婪總嗜伍辮淫帖琴斑牡締懦澈渴送刀纓辛感疏黎喻喬嘛澈屠巋洪屜瞧本癡邵曹抖啃拌心烏柔杏救天樣校扇愿泰世機(jī)斤損臃駕凋藹孵竅鍺楊檄協(xié)軀氰變倘殲禁乙盼貿(mào)軒壩梗實(shí)諜猛洞霸瑚收熱敦閑棲扇德截津處駝稠棋震鉚站悔癢橋仙灣攏清循底盈臉藩瑪胰豎吧絲狄湃佐翅件廠桂與眺龜瑩伶螞琶戊踏膠薔茹曲崇映捌啤篷供扶璃措植楞孕互望鶴貳郊態(tài)范艇掛仰棲疑醒割聞琶雅喳壽望史汪肪因摻鎮(zhèn)搖蟄芳電久胡屠混艱枯象估欲剮閃務(wù)拎蔑梁文漫薔詛雕抱平眉楚烏味槽矗擾魔閹莖注逢圾姜心米纖警切詫撓鹼又特戶白絳紀(jì)唇田哼類滌汞甭美疽潘肆愉圭戌
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第7課時圖形的位置練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)2圖形與幾何第1課時圖形的認(rèn)識與測量1平面圖形的認(rèn)識練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)1數(shù)與代數(shù)第10課時比和比例2作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊4比例1比例的意義和基本性質(zhì)第3課時解比例練習(xí)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第7課時圓柱的體積3作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊3圓柱與圓錐1圓柱第1節(jié)圓柱的認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊2百分?jǐn)?shù)(二)第1節(jié)折扣和成數(shù)作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)下冊1負(fù)數(shù)第1課時負(fù)數(shù)的初步認(rèn)識作業(yè)課件新人教版
- 2023年六年級數(shù)學(xué)上冊期末復(fù)習(xí)考前模擬期末模擬訓(xùn)練二作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊期末豐收園作業(yè)課件蘇教版
- 2023年六年級數(shù)學(xué)上冊易錯清單十二課件新人教版
- 標(biāo)準(zhǔn)工時講義
- 2021年一年級語文上冊第六單元知識要點(diǎn)習(xí)題課件新人教版
- 2022春一年級語文下冊課文5識字測評習(xí)題課件新人教版
- 2023年六年級數(shù)學(xué)下冊6整理和復(fù)習(xí)4數(shù)學(xué)思考第1課時數(shù)學(xué)思考1練習(xí)課件新人教版