(文理通用)2019屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題7 概率與統(tǒng)計(jì) 第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例練習(xí).doc
《(文理通用)2019屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題7 概率與統(tǒng)計(jì) 第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例練習(xí).doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《(文理通用)2019屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題7 概率與統(tǒng)計(jì) 第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例練習(xí).doc(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
第一部分 專題七 第一講 統(tǒng)計(jì)與統(tǒng)計(jì)案例 A組 1.(2018廣州模擬)廣州市2018年各月的平均氣溫(℃)數(shù)據(jù)的莖葉圖如下: 則這組數(shù)據(jù)的中位數(shù)是( B ) A.19 B.20 C.21.5 D.23 [解析] 由莖葉圖,把各數(shù)值由小到大排列,可得中位數(shù)為20,故選B. 2.某旅游城市為向游客介紹本地的氣溫情況,繪制了一年中各月平均最高氣溫和平均最低氣溫的雷達(dá)圖.圖中A點(diǎn)表示十月的平均最高氣溫約為15 ℃,B點(diǎn)表示四月的平均最低氣溫約為5 ℃.下面敘述不正確的是( D ) A.各月的平均最低氣溫都在0 ℃以上 B.七月的平均溫差比一月的平均溫差大 C.三月和十一月的平均最高氣溫基本相同 D.平均最高氣溫高于20 ℃的月份有5個(gè) [解析] 根據(jù)雷達(dá)圖可知全年最低氣溫都在0 ℃以上,故A正確;一月平均最高氣溫是6 ℃左右,平均最低氣溫2 ℃左右,七月平均最高氣溫22 ℃左右,平均最低氣溫13 ℃左右,所以七月的平均溫差比一月的平均溫差大,B正確;三月和十一月的平均最高氣溫都是10 ℃,三月和十一月的平均最高氣溫基本相同,C正確;平均最高氣溫高于20 ℃的有七月和八月,故D錯(cuò)誤. 3.(文)某廠生產(chǎn)A、B、C三種型號(hào)的產(chǎn)品,產(chǎn)品數(shù)量之比為3∶2∶4,現(xiàn)用分層抽樣的方法抽取一個(gè)樣本容量為180的樣本,則樣本中B型號(hào)的產(chǎn)品的數(shù)量為( B ) A.20 B.40 C.60 D.80 [解析] 由分層抽樣的定義知,B型號(hào)產(chǎn)品應(yīng)抽取180=40件. (理)某全日制大學(xué)共有學(xué)生5600人,其中??粕?300人,本科生有3000人,研究生1300人,現(xiàn)采用分層抽樣的方法調(diào)查學(xué)生利用因特網(wǎng)查找學(xué)習(xí)資料的情況,抽取的樣本為280人,則應(yīng)在專科生,本科生與研究生這三類學(xué)生中分別抽取( A ) A.65人,150人,65人 B.30人,150人,100人 C.93人,94人,93人 D.80人,120人,80人 [解析] =,1300=65,3000=150,故選A. 4.(文)在樣本頻率分布直方圖中,共有五個(gè)小長(zhǎng)方形,這五個(gè)小長(zhǎng)方形的面積由小到大成等差數(shù)列{an}.已知a2=2a1,且樣本容量為300,則小長(zhǎng)方形面積最大的一組的頻數(shù)為( A ) A.100 B.120 C.150 D. 200 [解析] 設(shè)公差為d,則a1+d=2a1,∴a1=d,∴d+2d+3d+4d+5d=1,∴d=,∴面積最大的一組的頻率等于5=. ∴小長(zhǎng)方形面積最大的一組的頻數(shù)為300=100. (理)某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該類體育節(jié)目時(shí)間的頻率分布直方圖,其中收看時(shí)間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].將日均收看該類體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,則圖中x的值為( A ) A.0.01 B.0.02 C.0.03 D.0.04 [解析] 由題設(shè)可知(0.005+x+0.012+0.02+0.025+0.028)10=1,解得x=0.01,選A. 5.等差數(shù)列x1,x2,x3,…,x9的公差為1,若以上述數(shù)據(jù)x1,x2,x3,…,x9為樣本,則此樣本的方差為( A ) A. B. C.60 D.30 [解析] 令等差數(shù)列為1,2,3…9,則樣本的平均值=5,∴s2=[(1-5)2+(2-5)2+…+(9-5)2]==. 6.(2018漢中一模)為了研究某種細(xì)菌在特定環(huán)境下,隨時(shí)間變化繁殖情況,得如下實(shí)驗(yàn)數(shù)據(jù),計(jì)算得回歸方程為=0.85x-0.25.由以上信息,得到下表中c的值為6. 天數(shù)t(天) 3 4 5 6 7 繁殖個(gè)數(shù)y(千個(gè)) 2.5 3 4 4.5 c [解析] 因?yàn)椋?3+4+5+6+7)=5,=(2.5+3+4+4.5+c)=, 所以這組數(shù)據(jù)的樣本中心點(diǎn)是(5,),把樣本中心點(diǎn)代入回歸方程=0.85x-0.25,所以=0.855-0.25,所以c=6. 7.將高三(1)班參加體檢的36名學(xué)生,編號(hào)為:1,2,3,…,36,若采用系統(tǒng)抽樣的方法抽取一個(gè)容量為4的樣本,已知樣本中含有編號(hào)為6、24、33的學(xué)生,則樣本中剩余一名學(xué)生的編號(hào)是15. [解析] 根據(jù)系統(tǒng)抽樣的特點(diǎn)可知抽取的4名學(xué)生的編號(hào)依次成等差數(shù)列,故剩余一名學(xué)生的編號(hào)是15. 8.(2018華北十校聯(lián)考)2018年的NBA全明星賽于北京時(shí)間2018年2月14日舉行,如圖是參加此次比賽的甲、乙兩名籃球運(yùn)動(dòng)員以往幾場(chǎng)比賽得分的莖葉圖,則甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)之和是64. [解析] 應(yīng)用莖葉圖的知識(shí)得,甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)分別為28,36,因此甲、乙兩人這幾場(chǎng)比賽得分的中位數(shù)之和是64. 9.班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班25位女同學(xué),24位男同學(xué)中隨機(jī)抽取一個(gè)容量為8的樣本進(jìn)行分析.若這8位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)對(duì)應(yīng)如下表: 學(xué)生編號(hào) 1 2 3 4 5 6 7 8 數(shù)學(xué)分?jǐn)?shù)x 60 65 70 75 80 85 90 95 物理分?jǐn)?shù)y 72 77 80 84 88 90 93 95 上表數(shù)據(jù)表示變量y與x的相關(guān)關(guān)系. (1)畫出樣本的散點(diǎn)圖,并說明物理分?jǐn)?shù)y與數(shù)學(xué)分?jǐn)?shù)x之間是正相關(guān)還是負(fù)相關(guān); (2)求y與x的線性回歸直線方程(系數(shù)精確到0.01),并指出某學(xué)生數(shù)學(xué)83分,物理約為多少分(精確到1分)? 參考公式:回歸直線的方程是:=x+, 其中=,=-. 參考數(shù)據(jù):=77.5,≈85,(xi-)2=1050,(xi-)(yi-)≈688. [解析] (1)畫樣本散點(diǎn)圖如下: 由圖可知:物理分?jǐn)?shù)y與數(shù)學(xué)分?jǐn)?shù)x之間是正相關(guān)關(guān)系. (2)從散點(diǎn)圖中可以看出,這些點(diǎn)分布在一條直線附近,因此以用公式計(jì)算得, ==≈0.66, 由=77.5,≈85,得=-=85-0.6677.5≈33.85. 所以回歸直線方程為=0.66x+33.85. 當(dāng)x=83時(shí),=0.6683+33.85=88.63≈89. 因此某學(xué)生數(shù)學(xué)83分時(shí),物理約為89分. B組 1.(2018河北省衡水中學(xué)押題卷)《中國(guó)詩詞大會(huì)》的播出引發(fā)了全民的讀書熱,某小學(xué)語文老師在班里開展了一次詩詞默寫比賽,班里40名學(xué)生得分?jǐn)?shù)據(jù)的莖葉圖如圖所示.若規(guī)定得分不小于85分的學(xué)生得到“詩詞達(dá)人”的稱號(hào),小于85分且不小于70分的學(xué)生得到“詩詞能手”的稱號(hào),其他學(xué)生得到“詩詞愛好者”的稱號(hào),根據(jù)該次比賽的成績(jī)按照稱號(hào)的不同進(jìn)行分層抽樣抽選10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為( A ) A.2 B.4 C.5 D.6 [解析] 由莖葉圖可知,獲“詩詞達(dá)人”稱號(hào)的有8人,據(jù)該次比賽的成績(jī)按照稱號(hào)的不同進(jìn)行分層抽樣抽取10名學(xué)生,則抽選的學(xué)生中獲得“詩詞能手”稱號(hào)的人數(shù)為n,則=,∴n=2,故選A. 2.(文)某工廠為了對(duì)新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù): 單價(jià)x(元) 4 5 6 7 8 9 銷量y(件) 90 84 83 80 75 68 由表中數(shù)據(jù),求得線性回歸方程為=-4x+a.若在這些樣本點(diǎn)中任取一點(diǎn),則它在回歸直線左下方的概率為( B ) A. B. C. D. [解析] ==, ==80, ∵回歸直線過點(diǎn)(,80),∴a=106, ∴=-4x+106,∴點(diǎn)(5,84),(9,68)在回歸直線左下方,故所求概率P==. (理)關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論,其中正確的個(gè)數(shù)為( A ) ①利用殘差進(jìn)行回歸分析時(shí),若殘差點(diǎn)比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說明線性回歸模型的擬合精度較高; ②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,期望與方差均沒有變化; ③調(diào)查劇院中觀眾觀后感時(shí),從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查是分層抽樣法; ④已知隨機(jī)變量X服從正態(tài)分布N(3,1),且P(2≤X≤4)=0.682 6,則P(X>4)等于0.158 7 ⑤某單位有職工750人,其中青年職工350人,中年職工250人,老年職工150人.為了了解該單位職工的健康情況,用分層抽樣的方法從中抽取樣本.若樣本中的青年職工為7人,則樣本容量為15人. A.2 B.3 C.4 D.5 [解析]?、佗苷_,②③⑤錯(cuò)誤,⑤設(shè)樣本容量為n,則=,∴n=30,故⑤錯(cuò). 3.(2018青海省西寧市一模)某班一次測(cè)試成績(jī)的莖葉圖和頻率分布直方圖可見部分如圖,根據(jù)圖中的信息可確定被抽測(cè)的人數(shù)及分?jǐn)?shù)在[90,100]內(nèi)的人數(shù)分別為( C ) A.20,2 B.24,4 C.25,2 D.25,4 [解析] 由頻率分布直方圖可知,90~100的頻率和50~60的頻率相同,所以 90~100的人數(shù)為2,總?cè)藬?shù)為=25人,故選C. 4.為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如下統(tǒng)計(jì)數(shù)據(jù)表: 收入x(萬元) 8.2 8.6 10.0 11.3 11.9 支出y(萬元) 6.2 7.5 8.0 8.5 9.8 根據(jù)上表可得回歸直線方程=x+,其中=0.76,=-.據(jù)此估計(jì),該社區(qū)一戶年收入為15萬元家庭的年支出為( B ) A.11.4萬元 B.11.8萬元 C.12.0萬元 D.12.2萬元 [解析] 由已知得==10(萬元), ==8(萬元), 故=8-0.7610=0.4. 所以回歸直線方程為=0.76x+0.4,社區(qū)一戶年收入為15萬元家庭的年支出為=0.7615+0.4=11.8(萬元),故選B. 5.(2017山東卷,5)為了研究某班學(xué)生的腳長(zhǎng)x(單位:cm)和身高y(單位:cm)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測(cè)量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系.設(shè)其回歸直線方程為=x+.已知i=225,i=1 600,=4.該班某學(xué)生的腳長(zhǎng)為24,據(jù)此估計(jì)其身高為( C ) A.160 B.163 C.166 D.170 [解析] ∵i=225,∴=i=22.5. ∵i=1 600,∴=i=160. 又=4,∴=-=160-422.5=70. ∴回歸直線方程為=4x+70. 將x=24代入上式得=424+70=166.故選C. 6.新聞媒體為了了解觀眾對(duì)央視某節(jié)目的喜愛與性別是否有關(guān)系,隨機(jī)調(diào)查了觀看該節(jié)目的觀眾110名,得到如下的列聯(lián)表:試根據(jù)樣本估計(jì)總體的思想,估計(jì)約有99%的把握認(rèn)為“喜愛該節(jié)目與否和性別有關(guān)”. 女 男 總計(jì) 喜愛 40 20 60 不喜愛 20 30 50 總計(jì) 60 50 110 參考附表: P(K2≥k0) 0.050 0.010 0.001 k0 3.841 6.635 10.828 (參考公式:K2=,其中n=a+b+c+d) [解析] 分析列聯(lián)表中數(shù)據(jù),可得 K2=≈7.822>6.635,所以有99%的把握認(rèn)為“喜愛該節(jié)目與否和性別有關(guān)”. 7.某班開展一次智力競(jìng)賽活動(dòng),共a,b,c三個(gè)問題,其中題a滿分是20分,題b,c滿分都是25分,每道題或者得滿分,或者得0分,活動(dòng)結(jié)果顯示,全班同學(xué)每人至少答對(duì)一道題,有1名同學(xué)答對(duì)全部三道題,有15名同學(xué)答對(duì)其中兩道題,答對(duì)題a與題b的人數(shù)之和為29,答對(duì)題a與題c的人數(shù)之和為25,答對(duì)題b與題c的人數(shù)之和為20,則該班同學(xué)中只答對(duì)一道題的人數(shù)是4;該班的平均成績(jī)是42. [解析] 設(shè)x,y,z分別是答對(duì)a,b,c題的人數(shù),則有解得答對(duì)一道題的人數(shù)為(17+12+8)-31-215=4,全班總?cè)藬?shù)為4+15+1=20,全班總得分為1720+(12+8)25=840,平均成績(jī)?yōu)椋?2. 8.(2017全國(guó)卷Ⅱ,19)海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下: (1)設(shè)A表示事件“舊養(yǎng)殖法的箱產(chǎn)量低于50 kg”,估計(jì)A的概率; (2)填寫下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān); 箱產(chǎn)量<50 kg 箱產(chǎn)量≥50 kg 舊養(yǎng)殖法 新養(yǎng)殖法 (3)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)這兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較. 附: P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 K2=. [解析] (1)舊養(yǎng)殖法的箱產(chǎn)量低于50 kg的頻率為 (0.012+0.014+0.024+0.034+0.040)5=0.62, 因此,事件A的概率估計(jì)值為0.62. (2)根據(jù)箱產(chǎn)量的頻率分布直方圖得列聯(lián)表 箱產(chǎn)量<50 kg 箱產(chǎn)量≥50 kg 舊養(yǎng)殖法 62 38 新養(yǎng)殖法 34 66 K2=≈15.705. 由于15.705>6.635,故有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān). (3)箱產(chǎn)量的頻率分布直方圖表明:新養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在50 kg到55kg之間,舊養(yǎng)殖法的箱產(chǎn)量平均值(或中位數(shù))在45 kg到50kg之間,且新養(yǎng)殖法的箱產(chǎn)量分布集中程度較舊養(yǎng)殖法的箱產(chǎn)量分布集中程度高,因此,可以認(rèn)為新養(yǎng)殖法的箱產(chǎn)量較高且穩(wěn)定,從而新養(yǎng)殖法優(yōu)于舊養(yǎng)殖法.- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 文理通用2019屆高考數(shù)學(xué)大二輪復(fù)習(xí) 第1部分 專題7 概率與統(tǒng)計(jì) 第1講 統(tǒng)計(jì)與統(tǒng)計(jì)案例練習(xí) 文理 通用 2019 高考 數(shù)學(xué) 二輪 復(fù)習(xí) 部分 專題 概率 統(tǒng)計(jì) 案例 練習(xí)
鏈接地址:http://www.3dchina-expo.com/p-6357792.html