《2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試28 數(shù)列的概念與簡單表示法 文(含解析).docx》由會員分享,可在線閱讀,更多相關(guān)《2020高考數(shù)學刷題首選卷 第四章 數(shù)列 考點測試28 數(shù)列的概念與簡單表示法 文(含解析).docx(10頁珍藏版)》請在裝配圖網(wǎng)上搜索。
第四章 數(shù)列
考點測試28 數(shù)列的概念與簡單表示法
一、基礎(chǔ)小題
1.已知數(shù)列{an}的通項公式an=(n∈N*),則是這個數(shù)列的( )
A.第8項 B.第9項 C.第10項 D.第12項
答案 C
解析 由題意知=,n∈N*,解得n=10,即是這個數(shù)列的第10項.故選C.
2.在數(shù)列{an}中,a1=2,且(n+1)an=nan+1,則a3的值為( )
A.5 B.6 C.7 D.8
答案 B
解析 由(n+1)an=nan+1得=,所以數(shù)列為常數(shù)列,則==2,即an=2n,所以a3=23=6.故選B.
3.設(shè)an=-2n2+29n+3,則數(shù)列{an}的最大項是( )
A.107 B.108 C. D.109
答案 B
解析 因為an=-2n2+29n+3=-22+,n∈N*,所以當n=7時,an取得最大值108.
4.數(shù)列{an}中,a1=1,對于所有的n≥2,n∈N都有a1a2a3…an=n2,則a3+a5=( )
A. B. C. D.
答案 A
解析 解法一:令n=2,3,4,5,分別求出a3=,a5=,∴a3+a5=.故選A.
解法二:當n≥2時,a1a2a3…an=n2.
當n≥3時,a1a2a3…an-1=(n-1)2.
兩式相除得an=2,∴a3=,a5=,
∴a3+a5=.故選A.
5.若數(shù)列{an}滿足a1=2,an+1=,則a2018=( )
A.-2 B.-1 C.2 D.
答案 B
解析 ∵數(shù)列{an}滿足a1=2,an+1=(n∈N*),∴a2==-1,a3==,a4==2,…,可知此數(shù)列有周期性,周期T=3,即an+3=an,則a2018=a6723+2=a2=-1.故選B.
6.把1,3,6,10,15,…這些數(shù)叫做三角形數(shù),這是因為這些數(shù)目的圓點可以排成一個正三角形(如圖所示).
則第7個三角形數(shù)是( )
A.27 B.28 C.29 D.30
答案 B
解析 觀察三角形數(shù)的增長規(guī)律,可以發(fā)現(xiàn)每一項比它的前一項多的點數(shù)正好是該項的序號,即an=an-1+n(n≥2).所以根據(jù)這個規(guī)律計算可知,第7個三角形數(shù)是a7=a6+7=a5+6+7=15+6+7=28.故選B.
7.已知數(shù)列{an}的前n項和為Sn,若Sn=2an-4,n∈N*,則an=( )
A.2n+1 B.2n C.2n-1 D.2n-2
答案 A
解析 因為Sn=2an-4,所以n≥2時,有Sn-1=2an-1-4,兩式相減可得Sn-Sn-1=2an-2an-1,即an=2an-2an-1,整理得an=2an-1,即=2(n≥2).因為S1=a1=2a1-4,所以a1=4,所以an=2n+1.故選A.
8.在數(shù)列{an}中,a1=2,an+1=an+ln 1+,則an=( )
A.2+ln n B.2+(n-1)ln n
C.2+nln n D.1+n+ln n
答案 A
解析 解法一:由已知得an+1-an=ln 1+=
ln ,而an=(an-an-1)+(an-1+an-2)+…+(a2-a1)+a1,n≥2,所以an=ln +ln +…+
ln +2=ln …+2=ln n+2,n≥2.當n=1時,a1=2=ln 1+2.故選A.
解法二:由an=an-1+ln 1+=an-1+ln =an-1+ln n-ln (n-1)(n≥2),可知an-ln n=an-1-ln (n-1)(n≥2).令bn=an-ln n,則數(shù)列{bn}是以b1=a1-ln 1=2為首項的常數(shù)列,故bn=2,所以2=an-ln n,所以an=2+ln n.故選A.
9.已知數(shù)列{an}的通項公式為an=nn,則數(shù)列{an}中的最大項為( )
A. B. C. D.
答案 A
解析 解法一(作差比較法):
an+1-an=(n+1)n+1-nn=n,當n<2時,an+1-an>0,即an+1>an;當n=2時,an+1-an=0,即an+1=an;當n>2時,an+1-an<0,即an+1
a4>a5>…>an,所以數(shù)列{an}中的最大項為a2或a3,且a2=a3=22=.故選A.
解法二(作商比較法):
==1+,令>1,解得n<2;令=1,解得n=2;令<1,解得n>2.又an>0,故a1a4>a5>…>an,所以數(shù)列{an}中的最大項為a2或a3,且a2=a3=22=.故選A.
10.已知數(shù)列{an}的通項公式為an=2n2+tn+1,若{an}是單調(diào)遞增數(shù)列,則實數(shù)t的取值范圍是( )
A.(-6,+∞) B.(-∞,-6)
C.(-∞,-3) D.(-3,+∞)
答案 A
解析 解法一:因為{an}是單調(diào)遞增數(shù)列,所以對于任意的n∈N*,都有an+1>an,即2(n+1)2+t(n+1)+1>2n2+tn+1,化簡得t>-4n-2,所以t>-4n-2對于任意的n∈N*都成立,因為-4n-2≤-6,所以t>-6.故選A.
解法二:設(shè)f(n)=2n2+tn+1,其圖象的對稱軸為n=-,要使{an}是遞增數(shù)列,則-<,即t>-6.故選A.
11.已知Sn是數(shù)列{an}的前n項和,且有Sn=n2+1,則數(shù)列{an}的通項an=________.
答案
解析 當n=1時,a1=S1=1+1=2,當n≥2時,an=Sn-Sn-1=(n2+1)-[(n-1)2+1]=2n-1.此時對于n=1不成立,故an=
12.對于數(shù)列{an},定義數(shù)列{bn}滿足:bn=an+1-an(n∈N*),且bn+1-bn=1(n∈N*),a3=1,a4=-1,則a1=________.
答案 8
解析 由bn+1-bn=1知數(shù)列{bn}是公差為1的等差數(shù)列,又b3=a4-a3=-2,所以b1=-4,b2=-3,b1+b2=(a2-a1)+(a3-a2)=a3-a1=-7,解得a1=8.
二、高考小題
13.(2018全國卷Ⅰ)記Sn為數(shù)列{an}的前n項和,若Sn=2an+1,則S6=________.
答案?。?3
解析 根據(jù)Sn=2an+1,可得Sn+1=2an+1+1,兩式相減得an+1=2an+1-2an,即an+1=2an,當n=1時,S1=a1=2a1+1,解得a1=-1,所以數(shù)列{an}是以-1為首項,以2為公比的等比數(shù)列,所以S6==-63.
14.(2014全國卷Ⅱ)數(shù)列{an}滿足an+1=,a8=2,則a1=________.
答案
解析 由an+1=,得an=1-,∵a8=2,∴a7=1-=,a6=1-=-1,a5=1-=2,…,∴{an}是以3為周期的數(shù)列,∴a1=a7=.
15.(2016浙江高考)設(shè)數(shù)列{an}的前n項和為Sn.若S2=4,an+1=2Sn+1,n∈N*,則a1=________,S5=________.
答案 1 121
解析 解法一:∵an+1=2Sn+1,∴a2=2S1+1,即S2-a1=2a1+1,又∵S2=4,∴4-a1=2a1+1,解得a1=1.又an+1=Sn+1-Sn,∴Sn+1-Sn=2Sn+1,即Sn+1=3Sn+1,由S2=4,可求出S3=13,S4=40,S5=121.
解法二:由an+1=2Sn+1,得a2=2S1+1,即S2-a1=2a1+1,又S2=4,∴4-a1=2a1+1,解得a1=1.又an+1=Sn+1-Sn,∴Sn+1-Sn=2Sn+1,即Sn+1=3Sn+1,則Sn+1+=3,又S1+=,
∴是首項為,公比為3的等比數(shù)列,∴Sn+=3n-1,即Sn=,∴S5==121.
16.(2015江蘇高考)設(shè)數(shù)列{an}滿足a1=1,且an+1-an=n+1(n∈N*),則數(shù)列前10項的和為________.
答案
解析 由已知得,a2-a1=1+1,a3-a2=2+1,a4-a3=3+1,…,an-an-1=n-1+1(n≥2),則有an-a1=1+2+3+…+n-1+(n-1)(n≥2),因為a1=1,所以an=1+2+3+…+n(n≥2),即an=(n≥2),又當n=1時,a1=1也適合上式,故an=(n∈N*),所以==2,從而+++…+=2+2+2+…+2=2=.
三、模擬小題
17.(2018湖南六校聯(lián)考)已知數(shù)列{an}滿足:?m,n∈N*,都有anam=an+m,且a1=,那么a5=( )
A. B. C. D.
答案 A
解析 ∵數(shù)列{an}滿足:?m,n∈N*,都有anam=an+m,且a1=,∴a2=a1a1=,a3=a1a2=.那么a5=a3a2=.故選A.
18.(2018南昌模擬)在數(shù)列{an}中,a1=1,anan-1=an-1+(-1)n(n≥2,n∈N*),則的值是( )
A. B. C. D.
答案 C
解析 由已知得a2=1+(-1)2=2,∴2a3=2+(-1)3,a3=,∴a4=+(-1)4,a4=3,∴3a5=3+(-1)5,∴a5=,∴==.故選C.
19.(2019黃岡質(zhì)檢)已知數(shù)列{xn}滿足xn+2=|xn+1-xn|(n∈N*),若x1=1,x2=a(a≤1,a≠0),且xn+3=xn對于任意的正整數(shù)n均成立,則數(shù)列{xn}的前2020項和S2020=( )
A.673 B.674 C.1345 D.1347
答案 D
解析 ∵x1=1,x2=a(a≤1,a≠0),∴x3=|x2-x1|=|a-1|=1-a,∴x1+x2+x3=1+a+(1-a)=2,又xn+3=xn對于任意的正整數(shù)n均成立,∴數(shù)列{xn}的周期為3,∴數(shù)列{xn}的前2020項和S2020=S6733+1=6732+1=1347.故選D.
20.(2018河南鄭州一中考前沖刺)數(shù)列{an}滿足:a1=1,且對任意的m,n∈N*,都有am+n=am+an+mn,則+++…+=( )
A. B. C. D.
答案 D
解析 ∵a1=1,且對任意的m,n∈N*都有am+n=am+an+mn,∴an+1=an+n+1,即an+1-an=n+1,用累加法可得an=a1+=,∴==2-,∴+++…+=21-+-+…+-=,故選D.
21.(2018福建晉江季延中學月考)已知數(shù)列{an}滿足a1+2a2+3a3+…+nan=n+1(n∈N*),則數(shù)列{an}的通項公式為________.
答案 an=
解析 已知a1+2a2+3a3+…+nan=n+1,將n=1代入,得a1=2;當n≥2時,將n-1代入得a1+2a2+3a3+…+(n-1)an-1=n,兩式相減得nan=(n+1)-n=1,∴an=,∴an=
22.(2018北京海淀區(qū)模擬)數(shù)列{an}的通項為an=(n∈N*),若a5是{an}中的最大值,則a的取值范圍是________.
答案 [9,12]
解析 當n≤4時,an=2n-1單調(diào)遞增,因此n=4時取最大值,a4=24-1=15.當n≥5時,an=-n2+(a-1)n=-n-2+.∵a5是{an}中的最大值,∴解得9≤a≤12.∴a的取值范圍是[9,12].
一、高考大題
1.(2016全國卷Ⅲ)已知各項都為正數(shù)的數(shù)列{an}滿足a1=1,a-(2an+1-1)an-2an+1=0.
(1)求a2,a3;
(2)求{an}的通項公式.
解 (1)由題意得a2=,a3=.
(2)由a-(2an+1-1)an-2an+1=0得2an+1(an+1)=an(an+1).
因為{an}的各項都為正數(shù),所以=.
故{an}是首項為1,公比為的等比數(shù)列,因此an=.
2.(2015浙江高考)已知數(shù)列{an}滿足a1=且an+1=an-a(n∈N*).
(1)證明:1<≤2(n∈N*);
(2)設(shè)數(shù)列{a}的前n項和為Sn,證明:<≤(n∈N*).
證明 (1)由題意得an+1-an=-a≤0,
即an+1≤an,故an≤.
由an=(1-an-1)an-1,得
an=(1-an-1)(1-an-2)…(1-a1)a1>0.
由0a1>a2>a3>a4,a5>a6>a7>…>an>1(n∈N*).
∴數(shù)列{an}中的最大項為a5=2,最小項為a4=0.
(2)an=1+=1+.
∵對任意的n∈N*,都有an≤a6成立,結(jié)合函數(shù)f(x)=1+的單調(diào)性,∴5<<6,∴-10
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
2020高考數(shù)學刷題首選卷
第四章
數(shù)列
考點測試28
數(shù)列的概念與簡單表示法
文含解析
2020
高考
數(shù)學
首選
第四
考點
測試
28
概念
簡單
表示
解析
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-6370094.html