欧美精品一二区,性欧美一级,国产免费一区成人漫画,草久久久久,欧美性猛交ⅹxxx乱大交免费,欧美精品另类,香蕉视频免费播放

新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 熱點探究課4 立體幾何中的高考熱點問題學(xué)案 文 北師大版

上傳人:仙*** 文檔編號:63942899 上傳時間:2022-03-20 格式:DOC 頁數(shù):7 大?。?11.50KB
收藏 版權(quán)申訴 舉報 下載
新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 熱點探究課4 立體幾何中的高考熱點問題學(xué)案 文 北師大版_第1頁
第1頁 / 共7頁
新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 熱點探究課4 立體幾何中的高考熱點問題學(xué)案 文 北師大版_第2頁
第2頁 / 共7頁
新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 熱點探究課4 立體幾何中的高考熱點問題學(xué)案 文 北師大版_第3頁
第3頁 / 共7頁

下載文檔到電腦,查找使用更方便

10 積分

下載資源

還剩頁未讀,繼續(xù)閱讀

資源描述:

《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 熱點探究課4 立體幾何中的高考熱點問題學(xué)案 文 北師大版》由會員分享,可在線閱讀,更多相關(guān)《新版高考數(shù)學(xué)一輪復(fù)習(xí)學(xué)案訓(xùn)練課件: 第7章 立體幾何初步 熱點探究課4 立體幾何中的高考熱點問題學(xué)案 文 北師大版(7頁珍藏版)》請在裝配圖網(wǎng)上搜索。

1、 1

2、 1 熱點探究課(四) 立體幾何中的高考熱點問題 (對應(yīng)學(xué)生用書第107頁) [命題解讀] 1.立體幾何初步是高考的重要內(nèi)容,幾乎每年都考查一個解答題,兩個選擇或填空題,客觀題主要考查空間概念,三視圖及簡單計算;解答題主要采用“論證與計算”相結(jié)合的模式,即利用定義、公理、定理證明空間線線、線面、面面平行或垂直,并與幾何體的性質(zhì)相結(jié)合考查幾何體的計算.2.重在考查學(xué)生的空間想象能

3、力、邏輯推理論證能力及數(shù)學(xué)運算能力.考查的熱點是以幾何體為載體的垂直、平行的證明、平面圖形的折疊、探索開放性問題等;同時考查轉(zhuǎn)化化歸思想與數(shù)形結(jié)合的思想方法. 熱點1 線面位置關(guān)系與體積計算(答題模板) 以空間幾何體為載體,考查空間平行與垂直關(guān)系是高考的熱點內(nèi)容,并常與幾何體的體積計算交匯命題,考查學(xué)生的空間想象能力、計算與數(shù)學(xué)推理論證能力,同時突出轉(zhuǎn)化與化歸思想方法的考查,試題難度中等.  (本小題滿分12分)(20xx·長春模擬)如圖1,四邊形ABCD為菱形,G為AC與BD的交點,BE⊥平面ABCD. 圖1 (1)證明:平面AEC⊥平面BED; (2)若∠ABC=120

4、°,AE⊥EC,三棱錐E-ACD的體積為,求該三棱錐的側(cè)面積. 【導(dǎo)學(xué)號:00090256】 [思路點撥] (1)注意到四邊形ABCD為菱形,聯(lián)想到對角線垂直,從而進一步證線面垂直,面與面垂直;(2)根據(jù)幾何體的體積求得底面菱形的邊長,計算側(cè)棱,求出各個側(cè)面的面積. [規(guī)范解答] (1)證明:因為四邊形ABCD為菱形,所以AC⊥BD. 因為BE⊥平面ABCD,AC平面ABCD,所以AC⊥BE. 2分 因為BD∩BE=B,故AC⊥平面BED. 又AC平面AEC, 所以平面AEC⊥平面BED. 4分 (2)設(shè)AB=x,在菱形ABCD中,由∠ABC=120°,可得A

5、G=GC=x,GB=GD=. 因為AE⊥EC,所以在Rt△AEC中,可得EG=x. 6分 由BE⊥平面ABCD,知△EBG為直角三角形,可得BE=x. 由已知得,三棱錐E-ACD的體積V三棱錐E-ACD=×·AC·GD·BE=x3=,故x=2. 9分 從而可得AE=EC=ED=. 所以△EAC的面積為3,△EAD的面積與△ECD的面積均為. 故三棱錐E-ACD的側(cè)面積為3+2. 12分 [答題模板] 第一步:由線面垂直的性質(zhì),得線線垂直AC⊥BE. 第二步:根據(jù)線面垂直、面面垂直的判定定理證明平面AEC⊥平面BED. 第三步:利用棱錐的體積求出底面菱形的

6、邊長. 第四步:計算各個側(cè)面三角形的面積,求得四棱錐的側(cè)面積. 第五步:檢驗反思,查看關(guān)鍵點,規(guī)范步驟. [溫馨提示] 1.在第(1)問,易忽視條件BD∩BE=B,AC平面AEC,造成推理不嚴謹,導(dǎo)致扣分. 2.正確的計算結(jié)果是得分的關(guān)鍵,本題在求三棱錐的體積與側(cè)面積時,需要計算的量較多,防止計算結(jié)果錯誤失分,另外對于每一個得分點的解題步驟一定要寫全.閱卷時根據(jù)得分點評分,有則得分,無則不得分. [對點訓(xùn)練1] 如圖2,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別是A1C1,BC的中點. 圖2 (1)求證:平面

7、ABE⊥平面B1BCC1; (2)求證:C1F∥平面ABE; (3)求三棱錐E-ABC的體積. [解] (1)證明:在三棱柱ABC-A1B1C1中,因為BB1⊥底面ABC,AB平面ABC, 所以BB1⊥AB. 2分 又因為AB⊥BC,BB1∩BC=B, 所以AB⊥平面B1BCC1.又AB平面ABE, 所以平面ABE⊥平面B1BCC1. 4分 (2)證明:取AB的中點G,連接EG,F(xiàn)G. 因為G,F(xiàn)分別是AB,BC的中點, 所以FG∥AC,且FG=AC. 因為AC∥A1C1,且AC=A1C1, 所以FG∥EC1,且FG=EC1, 6

8、分 所以四邊形FGEC1為平行四邊形, 所以C1F∥EG. 又因為EG平面ABE,C1F平面ABE, 所以C1F∥平面ABE. 8分 (3)因為AA1=AC=2,BC=1,AB⊥BC, 所以AB==, 10分 所以三棱錐E-ABC的體積 V=S△ABC·AA1=×××1×2=. 12分 熱點2 平面圖形折疊成空間幾何體 先將平面圖形折疊成空間幾何體,再以其為載體研究其中的線、面間的位置關(guān)系與計算有關(guān)的幾何量,是近幾年高考考查立體幾何的一類重要考向,它很好地將平面圖形拓展成空間圖形,同時也為空間立體圖形向平面圖形轉(zhuǎn)化提供了具體形象的途徑,是高考深層次上考

9、查空間想象能力的主要方向.  如圖3,在長方形ABCD中,AB=2,BC=1,E為CD的中點,F(xiàn)為AE的中點.現(xiàn)沿AE將三角形ADE向上折起,在折起的圖形中解答下列問題: 圖3 (1)在線段AB上是否存在一點K,使BC∥平面DFK?若存在,請證明你的結(jié)論;若不存在,請說明理由; (2)若平面ADE⊥平面ABCE,求證:平面BDE⊥平面ADE. [解] (1)如圖,線段AB上存在一點K,且當AK=AB時,BC∥平面DFK. 1分 證明如下: 設(shè)H為AB的中點,連接EH,則BC∥EH. ∵AK=AB,F(xiàn)為AE的中點, ∴KF∥EH,∴KF∥BC.

10、3分 ∵KF平面DFK,BC平面DFK, ∴BC∥平面DFK. 5分 (2)證明:∵在折起前的圖形中E為CD的中點,AB=2,BC=1, ∴在折起后的圖形中,AE=BE=, 從而AE2+BE2=4=AB2,∴AE⊥BE. 8分 ∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE, ∴BE⊥平面ADE. ∵BE平面BDE,∴平面BDE⊥平面ADE. 12分 [規(guī)律方法] 1.解決與折疊有關(guān)的問題的關(guān)鍵是搞清折疊前后的變化量和不變量,一般情況下,線段的長度是不變量,而位置關(guān)系往往會發(fā)生變化,抓住不變量是解決問題的突破口. 2.在解決問題時,要

11、綜合考慮折疊前后的圖形,既要分析折疊后的圖形,也要分析折疊前的圖形. [對點訓(xùn)練2] (20xx·全國卷Ⅱ)如圖4,菱形ABCD的對角線AC與BD交于點O,點E,F(xiàn)分別在AD,CD上,AE=CF,EF交BD于點H.將△DEF沿EF折到△D′EF的位置. 圖4 (1)證明:AC⊥HD′; (2)若AB=5,AC=6,AE=,OD′=2,求五棱錐D′-ABCFE的體積. 【導(dǎo)學(xué)號:00090257】 [解] (1)證明:由已知得AC⊥BD,AD=CD. 2分 又由AE=CF得=, 故AC∥EF. 由此得EF⊥HD,故EF⊥HD′,所以AC⊥HD′. 5分 (

12、2)由EF∥AC得==. 由AB=5,AC=6得DO=BO==4. 7分 所以O(shè)H=1,D′H=DH=3. 于是OD′2+OH2=(2)2+12=9=D′H2, 故OD′⊥OH. 由(1)知AC⊥HD′,又AC⊥BD,BD∩HD′=H, 所以AC⊥平面BHD′,于是AC⊥OD′. 又由OD′⊥OH,AC∩OH=O, 所以O(shè)D′⊥平面ABC. 又由=得EF=. 10分 五邊形ABCFE的面積S=×6×8-××3=. 所以五棱錐D′-ABCFE的體積V=××2=. 12分 熱點3 線、面位置關(guān)系中的開放存在性問題 是否存在某點或某參數(shù),使得某種線、

13、面位置關(guān)系成立問題,是近幾年高考命題的熱點,常以解答題中最后一問的形式出現(xiàn),一般有三種類型:(1)條件追溯型.(2)存在探索型.(3)方法類比探索型.   (20xx·秦皇島模擬)如圖5所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側(cè)面PAD⊥底面ABCD,且E,F(xiàn)分別為PC,BD的中點. 圖5 (1)求證:EF∥平面PAD; (2)在線段CD上是否存在一點G,使得平面EFG⊥平面PDC?若存在,請說明其位置,并加以證明;若不存在,請說明理由. [解] (1)證明:如圖所示,連接AC,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,且點F為對角線BD

14、的中點. 2分 所以對角線AC經(jīng)過點F. 又在△PAC中,點E為PC的中點, 所以EF為△PAC的中位線, 所以EF∥PA. 又PA平面PAD,EF平面PAD, 所以EF∥平面PAD. 5分 (2)存在滿足要求的點G. 在線段CD上存在一點G為CD的中點,使得平面EFG⊥平面PDC. 因為底面ABCD是邊長為a的正方形, 所以CD⊥AD. 7分 又側(cè)面PAD⊥底面ABCD,CD平面ABCD,側(cè)面PAD∩平面ABCD=AD, 所以CD⊥平面PAD. 又EF∥平面PAD,所以CD⊥EF. 取CD中點G,連接FG,EG. 9分

15、 因為F為BD中點, 所以FG∥AD. 又CD⊥AD,所以FG⊥CD, 又FG∩EF=F, 所以CD⊥平面EFG, 又CD平面PDC, 所以平面EFG⊥平面PDC. 12分 [規(guī)律方法] 1.在立體幾何的平行關(guān)系問題中,“中點”是經(jīng)常使用的一個特殊點,通過找“中點”,連“中點”,即可出現(xiàn)平行線,而線線平行是平行關(guān)系的根本. 2.第(2)問是探索開放性問題,采用了先猜后證,即先觀察與嘗試給出條件再加以證明,對于命題結(jié)論的探索,常從條件出發(fā),探索出要求的結(jié)論是什么,對于探索結(jié)論是否存在,求解時常假設(shè)結(jié)論存在,再尋找與條件相容或者矛盾的結(jié)論. [對點訓(xùn)練3] (

16、20xx·湖南師大附中檢測)如圖6,四棱錐S-ABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點. 圖6 (1)求證:AC⊥SD; (2)若SD⊥平面PAC,則側(cè)棱SC上是否存在一點E,使得BE∥平面PAC?若存在,求SE∶EC;若不存在,請說明理由. 【導(dǎo)學(xué)號:00090258】 [證明] (1)連接BD,設(shè)AC交BD于點O,連接SO,由題意得四棱錐S-ABCD是正四棱錐,所以SO⊥AC. 2分 在正方形ABCD中,AC⊥BD,又SO∩BD=O,所以AC⊥平面SBD. 因為SD平面SBD,所以AC⊥SD. 5分 (2)在棱SC上存在一點E,使得BE∥平面PAC. 連接OP.設(shè)正方形ABCD的邊長為a,則SC=SD=A. 7分 由SD⊥平面PAC得SD⊥PC,易求得PD=. 故可在SP上取一點N,使得PN=PD. 過點N作PC的平行線與SC交于點E,連接BE,BN, 在△BDN中,易得BN∥PO. 10分 又因為NE∥PC,NE平面BNE,BN平面BNE,BN∩NE=N,PO平面PAC,PC平面PAC,PO∩PC=P, 所以平面BEN∥平面PAC,所以BE∥平面PAC. 因為SN∶NP=2∶1,所以SE∶EC=2∶1. 12分

展開閱讀全文
溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

相關(guān)資源

更多
正為您匹配相似的精品文檔
關(guān)于我們 - 網(wǎng)站聲明 - 網(wǎng)站地圖 - 資源地圖 - 友情鏈接 - 網(wǎng)站客服 - 聯(lián)系我們

copyright@ 2023-2025  zhuangpeitu.com 裝配圖網(wǎng)版權(quán)所有   聯(lián)系電話:18123376007

備案號:ICP2024067431-1 川公網(wǎng)安備51140202000466號


本站為文檔C2C交易模式,即用戶上傳的文檔直接被用戶下載,本站只是中間服務(wù)平臺,本站所有文檔下載所得的收益歸上傳人(含作者)所有。裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對上載內(nèi)容本身不做任何修改或編輯。若文檔所含內(nèi)容侵犯了您的版權(quán)或隱私,請立即通知裝配圖網(wǎng),我們立即給予刪除!