高考數(shù)學(xué)復(fù)習(xí) 17-18版 第1章 第1課 集合的概念與運(yùn)算
《高考數(shù)學(xué)復(fù)習(xí) 17-18版 第1章 第1課 集合的概念與運(yùn)算》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)復(fù)習(xí) 17-18版 第1章 第1課 集合的概念與運(yùn)算(14頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
1、 第一章 集合與常用邏輯用語 第1課集合的概念與運(yùn)算 [最新考綱] 內(nèi)容 要求 A B C 集合及其表示 √ 子集 √ 交集、并集、補(bǔ)集 √ 1.元素與集合 (1)集合中元素的三個(gè)特性:確定性、互異性、無序性. (2)元素與集合的關(guān)系是屬于或不屬于,表示符號(hào)分別為∈和?. (3)集合的三種表示方法:列舉法、描述法、Venn圖法. 2.集合間的基本關(guān)系 (1)子集:若對(duì)?x∈A,都有x∈B,則A?B或B?A. (2)真子集:若A?B,但?x∈B,且x?A,則AB或BA. (3)相等:若A?B,且B?A,則A=B.
2、 (4)空集的性質(zhì):?是任何集合的子集,是任何非空集合的真子集. 3.集合的基本運(yùn)算 并集 交集 補(bǔ)集 圖形表示 符號(hào)表示 A∪B A∩B ?UA 意義 {x|x∈A或x∈B} {x|x∈A且x∈B} {x|x∈U且x?A} 4.集合關(guān)系與運(yùn)算的常用結(jié)論 (1)若有限集A中有n個(gè)元素,則A的子集有2n個(gè),真子集有2n-1個(gè). (2)子集的傳遞性:A?B,B?C?A?C. (3)A?B?A∩B=A?A∪B=B. (4)?U(A∩B)=(?UA)∪(?UB),?U(A∪B)=(?UA)∩(?UB). 1.(思考辨析)判斷下列結(jié)論的正誤.(
3、正確的打“√”,錯(cuò)誤的打“×”) (1)任何集合都有兩個(gè)子集.( ) (2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},則A=B=C.( ) (3)若{x2,1}={0,1},則x=0,1.( ) (4)若A∩B=A∩C,則B=C.( ) [解析] (1)錯(cuò)誤.空集只有一個(gè)子集,就是它本身,故該說法是錯(cuò)誤的. (2)錯(cuò)誤.集合A是函數(shù)y=x2的定義域,即A=(-∞,+∞);集合B是函數(shù)y=x2的值域,即B=[0,+∞);集合C是拋物線y=x2上的點(diǎn)集.因此A,B,C不相等. (3)錯(cuò)誤.當(dāng)x=1時(shí),不滿足互異性. (4)錯(cuò)誤.當(dāng)A=
4、?時(shí),B,C可為任意集合.
[答案] (1)× (2)× (3)× (4)×
2.(教材改編)已知集合A={x|3≤x<7},B={x|2 5、3個(gè)元素,故該集合有23=8(個(gè))子集.]
5.(2017·鹽城期中模擬)若集合A={x|x≤m},B={x|-2 6、0,y=0,1,2時(shí),x-y=0,-1,-2;
當(dāng)x=1,y=0,1,2時(shí),x-y=1,0,-1;
當(dāng)x=2,y=0,1,2時(shí),x-y=2,1,0.
根據(jù)集合中元素的互異性可知,B的元素為-2,-1,0,1,2,共5個(gè).
(2)若集合A中只有一個(gè)元素,則方程ax2-3x+2=0只有一個(gè)實(shí)根或有兩個(gè)相等實(shí)根.
當(dāng)a=0時(shí),x=,符合題意;
當(dāng)a≠0時(shí),由Δ=(-3)2-8a=0得a=,
所以a的取值為0或.]
[規(guī)律方法] 1.研究集合問題,首先要抓住元素,其次看元素應(yīng)滿足的屬性;特別地,對(duì)于含有字母的集合,在求出字母的值后,要注意檢驗(yàn)集合的元素是否滿足互異性,如題(1).
2 7、.由于方程的不定性導(dǎo)致求解過程用了分類討論思想,如題(2).
[變式訓(xùn)練1] (1)(2017·啟東中學(xué)高三第一次月考)已知x2∈{0,1,x},則實(shí)數(shù)x的值是________.
(2)已知集合A={x∈R|ax2+3x-2=0},若A=?,則實(shí)數(shù)a的取值范圍為________.
(1)-1 (2) [(1)由集合中元素的互異性可知x≠0且x≠1.
又x2∈{0,1,x},所以只能x2=1,解得x=-1或x=1(舍去).
(2)∵A=?,∴方程ax2+3x-2=0無實(shí)根,
當(dāng)a=0時(shí),x=不合題意;
當(dāng)a≠0時(shí),Δ=9+8a<0,∴a<-.]
集合間的基本關(guān)系
(1 8、)已知集合A={x|x2-3x+2=0,x∈R},B={x|0 9、,則m≤2.
當(dāng)B≠?時(shí),若B?A,如圖.
則
解得2<m≤4.
綜上,m的取值范圍為m≤4.]
[規(guī)律方法] 1.空集是任何集合的子集,在涉及集合關(guān)系時(shí),必須優(yōu)先考慮空集的情況,否則會(huì)造成漏解,如題(2).
2.已知兩集合間的關(guān)系求參數(shù)時(shí),關(guān)鍵是將兩集合間的關(guān)系轉(zhuǎn)化為元素或區(qū)間端點(diǎn)間的關(guān)系,進(jìn)而轉(zhuǎn)化為參數(shù)滿足的關(guān)系,解決這類問題常常要合理利用數(shù)軸、Venn圖化抽象為直觀進(jìn)行求解.
[變式訓(xùn)練2] (1)設(shè)a,b∈R,集合{1,a+b,a}=,則b-a=________.
(2)設(shè)集合A={0,-4},B={x|x2+2(a+1)x+a2-1=0,x∈R}.若B?A,則實(shí)數(shù) 10、a的取值范圍是________.
(1)2 (2)(-∞,-1]∪{1} [(1)由題意可知a,b≠0,由集合相等的定義可知,a+b=0,∴a=-b,即=-1,
∴b=1,故b-a=2b=2.
(2)因?yàn)锳={0,-4},所以B?A分以下三種情況:
①當(dāng)B=A時(shí),B={0,-4},由此知0和-4是方程x2+2(a+1)x+a2-1=0的兩個(gè)根,由根與系數(shù)的關(guān)系,得
解得a=1;
②當(dāng)B≠?且BA時(shí),B={0}或B={-4},
并且Δ=4(a+1)2-4(a2-1)=0,
解得a=-1,此時(shí)B={0}滿足題意;
③當(dāng)B=?時(shí),Δ=4(a+1)2-4(a2-1)<0,解得a<- 11、1.
綜上所述,所求實(shí)數(shù)a的取值范圍是a≤-1或a=1.]
集合的基本運(yùn)算
角度1 求集合的交集或并集
(1)(2017·南京二模)設(shè)集合A={x|-2 12、}.]
角度2 交、并、補(bǔ)的混合運(yùn)算
(1)(2017·蘇錫常鎮(zhèn)二調(diào))已知集合U={1,2,3,4,5},A={1,2},B={2,3,4},則A∪(?UB)=________.
(2)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},則陰影部分表示的集合是________.
圖1-1
(1){1,2,5} (2)(-3,-1) [(1)由題意可知?UB={1,5},又A={1,2},∴A∪(?UB)={1,2,5}.
(2)由題意可知,M=(-3,1),N=[-1,1],∴陰影部分表示的集合為M∩(?UN)=(-3,-1).]
角度3 利用 13、集合的運(yùn)算求參數(shù)
(1)(2017·南通二調(diào))設(shè)集合A={-1,0,1},B=,A∩B={0},則實(shí)數(shù)a的值為________. 【導(dǎo)學(xué)號(hào):62172001】
(2)已知集合A={1,3,},B={1,m},A∪B=A,則m=________.
(3)設(shè)集合A={0,1},集合B={x|x>a},若A∩B=?,則實(shí)數(shù)a的取值范圍是________.
(1)1 (2)0或3 (3)[1,+∞) [(1)∵A={-1,0,1},B=,A∩B={0},
∴a-1=0或a+=0(舍去),
∴a=1.
(2)由A∪B=A可知B?A,
又A={1,3,},B={1,m},
所以m=3或 14、m=,解得m=0或m=3或m=1(舍去).
(3)由A∩B=?可知,a≥1.]
[規(guī)律方法] 1.求集合的交集和并集時(shí)首先應(yīng)明確集合中元素的屬性,然后利用交集和并集的定義求解.
2.在進(jìn)行集合的運(yùn)算時(shí)要盡可能地借助Venn圖和數(shù)軸使抽象問題直觀化.一般地,集合元素離散時(shí)用Venn圖表示;集合元素連續(xù)時(shí)用數(shù)軸表示,用數(shù)軸表示時(shí)要注意端點(diǎn)值的取舍.
易錯(cuò)警示:在解決有關(guān)A∩B=?,A?B等集合問題時(shí),往往忽視空集的情況,一定要先考慮?是否成立,以防漏解.
[思想與方法]
1.在解題時(shí)經(jīng)常用到集合元素的互異性,一方面利用集合元素的互異性能順利找到解題的切入點(diǎn);另一方面,對(duì)求出的字母的 15、值,應(yīng)檢驗(yàn)是否滿足集合元素的互異性,以確保答案正確.
2.求集合的子集(真子集)個(gè)數(shù)問題,需要注意的是:首先,過好轉(zhuǎn)化關(guān),即把圖形語言轉(zhuǎn)化為符號(hào)語言;其次,當(dāng)集合的元素個(gè)數(shù)較少時(shí),常利用枚舉法解決.
3.對(duì)于集合的運(yùn)算,常借助數(shù)軸、Venn圖求解.
(1)對(duì)連續(xù)數(shù)集間的運(yùn)算,借助數(shù)軸的直觀性,進(jìn)行合理轉(zhuǎn)化;對(duì)已知連續(xù)數(shù)集間的關(guān)系,求其中參數(shù)的取值范圍,關(guān)鍵在于轉(zhuǎn)化成關(guān)于參數(shù)的方程或不等式關(guān)系.
(2)對(duì)離散的數(shù)集間的運(yùn)算,或抽象集合間的運(yùn)算,可借助Venn圖,這是數(shù)形結(jié)合思想的又一體現(xiàn).
[易錯(cuò)與防范]
1.集合問題解題中要認(rèn)清集合中元素的屬性(是數(shù)集、點(diǎn)集還是其他類型集合),要對(duì) 16、集合進(jìn)行化簡.
2.空集是任何集合的子集,是任何非空集合的真子集,時(shí)刻關(guān)注對(duì)空集的討論,以防漏解.
3.解題時(shí)注意區(qū)分兩大關(guān)系:一是元素與集合的從屬關(guān)系;二是集合與集合的包含關(guān)系.
4.Venn圖圖示法和數(shù)軸圖示法是進(jìn)行集合交、并、補(bǔ)運(yùn)算的常用方法,其中運(yùn)用數(shù)軸圖示法時(shí)要特別注意端點(diǎn)是實(shí)心還是空心.
課時(shí)分層訓(xùn)練(一)
A組 基礎(chǔ)達(dá)標(biāo)
(建議用時(shí):30分鐘)
一、填空題
1.(2017·蘇州期中)已知集合A={0,1},B={-1,0},則A∪B=________.
{-1,0,1} [A∪B={0,1}∪{-1,0}={-1,0,1}.]
2.(2017·南京模擬)設(shè)集合 17、A={x|-1≤x≤2},B={x|0≤x≤4},則A∩B=________. 【導(dǎo)學(xué)號(hào):62172002】
{x|0≤x≤2} [A∩B={x|-1≤x≤2}∩{x|0≤x≤4}
={x|0≤x≤2}.]
3.(2017·南通第一次學(xué)情檢測)已知集合A={x|0 18、θ=________.
[由A=B可知cos θ=,又θ為銳角,∴θ=.]
5.(2017·鹽城三模)已知集合A={1,2,3,4,5},B={1,3,5,7,9},C=A∩B,則集合C的子集的個(gè)數(shù)為________.
8 [由題意可知A∩B={1,3,5},
∴C={1,3,5},
∴集合C的子集共有23=8個(gè).]
6.(2017·南京三模)已知全集U={-1,2,3,a},集合M={-1,3}.若?UM={2,5},則實(shí)數(shù)a的值為________.
5 [∵M(jìn)∪?UM=U,∴U={-1,2,3,5},∴a=5.]
7.(2017·泰州中學(xué)高三摸底考試)已知集合A={x|x 19、>0},B={-1,0,1,2},則A∩B=________.
{1,2} [A∩B={x|x>0}∩{-1,0,1,2}={1,2}.]
8.設(shè)全集U={1,2,3,4},集合A={1,3},B={2,3},則B∩(?UA)=________.
【導(dǎo)學(xué)號(hào):62172003】
{2} [∵A={1,3},∴?UA={2,4},∴B∩(?UA)={2,3}∩{2,4}={2}.]
9.設(shè)集合A={1,2,4},集合B={x|x=a+b,a∈A,b∈A},則集合B中的元素個(gè)數(shù)為________.
6 [∵A={1,2,4},B={2,3,4,5,6,8},
∴集合B中共有6個(gè)元素. 20、]
10.已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},則集合A∩B中元素的個(gè)數(shù)為________.
2 [集合A中元素滿足x=3n+2,n∈N,即被3除余2,而集合B中滿足這一要求的元素只有8和14.共2個(gè)元素.]
11.(2017·無錫模擬)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,則實(shí)數(shù)a=________. 【導(dǎo)學(xué)號(hào):62172004】
0 [∵1∈{a+2,(a+1)2,a2+3a+3},
∴1=a+2,或(a+1)2=1,或a2+3a+3=1.
①當(dāng)a+2=1,即a=-1時(shí),此時(shí)a2+3a+3=1,不滿足集合中元素的互異性 21、;
②當(dāng)(a+1)2=1時(shí),a=0或a=-2,又當(dāng)a=-2時(shí),a2+3a+3=1,不滿足集合中元素的互異性;
③當(dāng)a2+3a+3=1時(shí),a=-1或-2,由①②可知,均不滿足題意.
綜上可知,a=0.]
12.已知集合A,B均為全集U={1,2,3,4}的子集,且?U(A∪B)={4},B={1,2},則A∩(?UB)=________.
{3} [∵U={1,2,3,4},?U(A∪B)={4},
∴A∪B={1,2,3}.
又∵B={1,2},∴{3}?A?{1,2,3},
又?UB={3,4},∴A∩(?UB)={3}.]
B組 能力提升
(建議用時(shí):15分鐘)
1. 22、(2016·全國卷Ⅱ改編)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},則A∪B=________.
{0,1,2,3} [B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1}.又A={1,2,3},所以A∪B={0,1,2,3}.]
2.(2016·天津高考改編)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},則A∩B=________.
{1,4} [因?yàn)榧螧中,x∈A,所以當(dāng)x=1時(shí),y=3-2=1;
當(dāng)x=2時(shí),y=3×2-2=4;
當(dāng)x=3時(shí),y=3×3-2=7;
當(dāng)x=4時(shí),y=3×4-2 23、=10.
即B={1,4,7,10}.
又因?yàn)锳={1,2,3,4},所以A∩B={1,4}.]
3.(2017·鹽城模擬)已知全集U=R,集合A={x|y=lg(x-1)},集合B={y|y=},則A∩B=________.
[2,+∞) [∵A={x|y=lg(x-1)}={x|x-1>0}={x|x>1},
B={y|y=}={y|y≥2},
∴A∩B={x|x≥2}.]
4.(2017·南通中學(xué)月考)已知集合M={1,2,3,4},則集合P={x|x∈M,且2x?M}的子集的個(gè)數(shù)為________.
4 [由題意可知P={3,4},故集合P的子集共有22=4個(gè).]
5 24、.已知A={x|x2-3x+2=0},B={x|ax-2=0},若A∩B=B,則實(shí)數(shù)a的值為________. 【導(dǎo)學(xué)號(hào):62172005】
0,1,2 [∵A={x|x2-3x+2=0}={1,2}.
由A∩B=B可知B?A.
①當(dāng)a=0時(shí),B=?,滿足A∩B=B;
②當(dāng)a≠0時(shí),B=,
由B?A可知,=1或=2,即a=1或a=2.
綜上可知a的值為0,1,2.]
6.若x∈A,且∈A,就稱A是伙伴關(guān)系集合,則集合M=的所有非空子集中具有伙伴關(guān)系的集合的個(gè)數(shù)為________.
3 [具有伙伴關(guān)系的元素組是-1,,2,所以具有伙伴關(guān)系的集合有3個(gè):{-1},,.]
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 110中國人民警察節(jié)(筑牢忠誠警魂感受別樣警彩)
- 2025正字當(dāng)頭廉字入心爭當(dāng)公安隊(duì)伍鐵軍
- XX國企干部警示教育片觀后感筑牢信仰之基堅(jiān)守廉潔底線
- 2025做擔(dān)當(dāng)時(shí)代大任的中國青年P(guān)PT青年思想教育微黨課
- 2025新年工作部署會(huì)圍繞六個(gè)干字提要求
- XX地區(qū)中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 支部書記上黨課筑牢清廉信念為高質(zhì)量發(fā)展?fàn)I造風(fēng)清氣正的環(huán)境
- 冬季消防安全知識(shí)培訓(xùn)冬季用電防火安全
- 2025加強(qiáng)政治引領(lǐng)(政治引領(lǐng)是現(xiàn)代政黨的重要功能)
- 主播直播培訓(xùn)直播技巧與方法
- 2025六廉六進(jìn)持續(xù)涵養(yǎng)良好政治生態(tài)
- 員工職業(yè)生涯規(guī)劃方案制定個(gè)人職業(yè)生涯規(guī)劃
- 2024年XX地區(qū)黨建引領(lǐng)鄉(xiāng)村振興工作總結(jié)
- XX中小學(xué)期末考試經(jīng)驗(yàn)總結(jié)(認(rèn)真復(fù)習(xí)輕松應(yīng)考)
- 幼兒園期末家長會(huì)長長的路慢慢地走