2018年高考數學二輪復習 第一部分 專題二 三角函數、平面 向量 第三講 平面向量教案
《2018年高考數學二輪復習 第一部分 專題二 三角函數、平面 向量 第三講 平面向量教案》由會員分享,可在線閱讀,更多相關《2018年高考數學二輪復習 第一部分 專題二 三角函數、平面 向量 第三講 平面向量教案(10頁珍藏版)》請在裝配圖網上搜索。
1、 第三講 平面向量 [考情分析] 平面向量的命題近幾年較穩(wěn)定,一般是單獨命題考查平面向量的模、數量積的運算、線性運算等,難度較低,有時也與三角函數、解析幾何綜合命題,難度中等. 年份 卷別 考查角度及命題位置 2017 Ⅰ卷 向量垂直的應用·T13 Ⅱ卷 向量加減法的幾何意義·T4 Ⅲ卷 向量垂直的應用·T13 2016 Ⅰ卷 平面向量垂直求參數·T13 Ⅱ卷 平面向量共線求參數·T13 Ⅲ卷 向量的夾角公式·T3 2015 Ⅰ卷 平面向量的坐標運算·T2 Ⅱ卷 平面向量數量積的坐標運算·T4 [真題自檢] 1.(2017·高考全國
2、卷Ⅱ)設非零向量a,b滿足|a+b|=|a-b|,則( ) A.a⊥b B.|a|=|b| C.a∥b D.|a|>|b| 解析:依題意得(a+b)2-(a-b)2=0,即4a·b=0,a⊥b,選A. 答案:A 2.(2015·高考全國卷Ⅱ)向量a=(1,-1),b=(-1,2),則(2a+b)·a=( ) A.-1 B.0 C.1 D.2 解析:法一:∵a=(1,-1),b=(-1,2),∴a2=2,a·b=-3,從而(2a+b)·a=2a2+a·b=4-3=1. 法二:∵a=(1,-1),b=(-1,2),∴2a+b=(2,-2)+(-1,2)=(1,0),從而
3、(2a+b)·a=(1,0)·(1,-1)=1,故選C. 答案:C 3.(2016·高考全國卷Ⅱ)已知向量a=(m,4),b=(3,-2),且a∥b,則m=________. 解析:∵a=(m,4),b=(3,-2),a∥b,∴-2m-4×3=0.∴m=-6. 答案:-6 4.(2017·高考全國卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b與a垂直,則m=________. 解析:因為a+b=(m-1,3),a+b與a垂直,所以(m-1)×(-1)+3×2=0,解得m=7. 答案:7 平面向量的概念及線性運算 [方法結論] 1.在用三角形加法法則時要保證
4、“首尾相接”,結果向量是第一個向量的起點指向最后一個向量終點所在的向量;在用三角形減法法則時要保證“同起點”,結果向量的方向是指向被減向量. 2.利用平面向量基本定理實現了平面內任一向量都可以表示為同一平面內兩個不共線的向量e1,e2的線性組合λ1e1+λ2e2,常用方法有兩種:一是直接利用三角形法則與平行四邊形法則及向量共線定理來破解;二是利用待定系數法,即利用定理中λ1,λ2的唯一性列方程組求解. [題組突破] 1.如圖,在△OAB中,點B關于點A的對稱點為C,D在線段OB上,且OD=2DB,DC和OA相交于點E.若=λ,則λ=( ) A. B. C. D. 解析:通解
5、:設=a,=b,由題意得=-=+-=+-=2a-b. 因為=λ=λa,設=μ=2μa-μb,又=+,所以λa=b+2μa-μb=2μa+b, 所以,所以λ=. 優(yōu)解:由題意知,AB=AC,OD=2DB,過點A作AF∥OB交CD于點F(圖略),則==, 即AF=BD=OD,故AE=OE,則OE=OA,又=λ,故λ=. 答案:C 2.如圖,在正方形ABCD中,M,N分別是BC,CD的中點,若=λ+μ,則λ+μ=( ) A.2 B. C. D. 解析:法一:以AB,AD所在直線分別為x軸,y軸,建立平面直角坐標系,如圖所示,設正方形的邊長為1,則=(1,),=(-,1),
6、=(1,1),∵=λ+μ=(λ-μ,+μ), ∴,解得,∴λ+μ=,故選D. 法二:由=+,=-+,得=λ+μ=(λ-)+(+μ), 又=+,∴,解得,∴λ+μ=,故選D. 答案:D 3.已知平面向量a=(2,1),c=(1,-1).若向量b滿足(a-b)∥c,(a+c)⊥b,則b=( ) A.(2,1) B.(1,2) C.(3,0) D.(0,3) 解析:通解:設b=(x,y),則a-b=(2-x,1-y),a+c=(3,0),由(a-b)∥c可得, -(2-x)-(1-y)=0,即x+y-3=0.由(a+c)⊥b可得,3x=0,則x=0,y=3,選D. 優(yōu)解:因
7、為a+c=(3,0),且(a+c)⊥b,逐個驗證選項可知,選D. 答案:D [誤區(qū)警示] 在運用向量共線定理時,向量a與b共線存在實數λ保持a=λb成立的前提條件是b≠0. 平面向量的數量積 [方法結論] 1.平面向量的數量積的運算的兩種形式 (1)依據模和夾角計算,要注意確定這兩個向量的夾角,如夾角不易求或者不可求,可通過選擇易求夾角和模的基底進行轉化; (2)利用坐標來計算,向量的平行和垂直都可以轉化為坐標滿足的等式,從而應用方程思想解決問題,化形為數,使向量問題數字化. 2.夾角公式 cos θ==. 3.模 |a|==. 4.向量a與b垂直?a·b=0. [
8、題組突破] 1.(2017·洛陽模擬)已知向量a=(1,0),|b|=,a與b的夾角為45°.若c=a+b,d=a-b,則c在d方向上的投影為( ) A. B.- C.1 D.-1 解析:依題意得|a|=1,a·b=1××cos 45°=1,|d|===1,c·d=a2-b2=-1,因此c在d方向上的投影等于=-1,選D. 答案:D 2.如圖,△AOB為直角三角形,OA=1,OB=2,C為斜邊AB的中點,P為線段OC的中點,則·=( ) A.1 B. C. D.- 解析:通解:因為△AOB為直角三角形,OA=1,OB=2,C為斜邊AB的中點,所以=+,所以==(
9、+),則=-=-,所以·=(-3)·(+)=(2-32)=. 優(yōu)解:以O為原點,的方向為x軸正方向,的方向為y軸正方向建立平面直角坐標系(圖略),則A(0,1),B(2,0),C,所以==,=,故·=×=. 答案:B 3.(2016·珠海摸底)已知|a|=|b|,且|a+b|=|a-b|,則向量a與b的夾角為( ) A.30° B.45° C.60° D.120° 解析:通解:設a與b的夾角為θ,由已知可得a2+2a·b+b2=3(a2-2a·b+b2),即4a·b=a2+b2,因為|a|=|b|,所以a·b=a2,所以cos θ==,θ=60°,選C. 優(yōu)解:由|a|=|
10、b|,且|a+b|=|a-b|可構造邊長為|a|=|b|=1的菱形,如圖,則|a+b|與|a-b|分別表示兩條對角線的長,且|a+b|=,|a-b|=1,故a與b的夾角為60°,選C. 答案:C 4.已知在平面直角坐標系中,O為坐標原點,A(1,0),B(0,-),C(-3,0),動點P滿足||=1,則|++|的最小值是________. 解析:通解:由||=1得點P(x,y)的軌跡方程為(x+3)2+y2=1,又=(1,0),=(0,-),=(x,y),故++=(1+x,y-),|++|的幾何意義是點M(-1,)與圓(x+3)2+y2=1上的點之間的距離.||==,由數形結合(圖略
11、)可知|++|的最小值即為點M(-1,)到圓(x+3)2+y2=1上的點的最短距離,故|++|的最小值為-1. 優(yōu)解:動點P的軌跡為以C為圓心的單位圓,設P(cos θ-3,sin θ)(θ∈[0,2π)), 則|++|===, 其中tan φ=,所以|++|的最小值為=-1. 答案:-1 [誤區(qū)警示] 1.在解決平面向量的數量積問題中的注意點 (1)兩個向量的夾角的定義;(2)兩個向量的夾角的范圍;(3)平面向量的數量積的幾何意義;(4)向量的數量積的運算及其性質等. 2.向量的數量積運算需要注意的問題 a·b=0時得不到a=0或b=0,根據平面向量數量積的性質有|a|2=
12、a2,但|a·b|≤|a|·|b|. 平面向量與其他知識的交匯問題 平面向量具有代數形式與幾何形式的“雙重型”,常與三角函數、解三角形、平面解析幾何、函數、不等式等知識交匯命題,平面向量的“位置”:一是作為解決問題的工具,二是通過運算作為命題條件. 交匯點一 平面向量與三角、解三角形的交匯 [典例1] (2016·青島二中模擬)已知a,b,c分別是△ABC的內角A,B,C所對的邊,向量m=(sin A,sin B),n=(sin C,sin A),且m∥n. (1)若cos A=,b+c=6,求△ABC的面積; (2)求sin B的取值范圍. 解析:因為m∥n,所以sin2 A=
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。