小升初奧數(shù)知識(shí)點(diǎn)講解.doc
《小升初奧數(shù)知識(shí)點(diǎn)講解.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《小升初奧數(shù)知識(shí)點(diǎn)講解.doc(16頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
小升初奧數(shù)知識(shí)點(diǎn)講解 不定方程 一次不定方程:含有兩個(gè)未知數(shù)的一個(gè)方程,叫做二元一次方程,由于它的解不唯一,所以也叫做二元一次不定方程; 常規(guī)方法:觀察法、試驗(yàn)法、枚舉法; 多元不定方程:含有三個(gè)未知數(shù)的方程叫三元一次方程,它的解也不唯一; 多元不定方程解法:根據(jù)已知條件確定一個(gè)未知數(shù)的值,或者消去一個(gè)未知數(shù),這樣就把三元一次方程變成二元一次不定方程,按照二元一次不定方程解即可; 涉及知識(shí)點(diǎn):列方程、數(shù)的整除、大小比較; 解不定方程的步驟:1、列方程;2、消元;3、寫出表達(dá)式;4、確定范圍;5、確定特征;6、確定答案; 技巧總結(jié):A、寫出表達(dá)式的技巧:用特征不明顯的未知數(shù)表示特征明顯的未知數(shù),同時(shí)考慮用范圍小的未知數(shù)表示范圍大的未知數(shù);B、消元技巧:消掉范圍大的未知數(shù); 工程問題 基本公式: ?、俟ぷ骺偭?工作效率工作時(shí)間 ?、诠ぷ餍?工作總量工作時(shí)間 ?、酃ぷ鲿r(shí)間=工作總量工作效率 基本思路: ①假設(shè)工作總量為“1”(和總工作量無關(guān)); ②假設(shè)一個(gè)方便的數(shù)為工作總量(一般是它們完成工作總量所用時(shí)間的最小公倍數(shù)),利用上述三個(gè)基本關(guān)系,可以簡(jiǎn)單地表示出工作效率及工作時(shí)間. 關(guān)鍵問題:確定工作量、工作時(shí)間、工作效率間的兩兩對(duì)應(yīng)關(guān)系。 經(jīng)驗(yàn)簡(jiǎn)評(píng):合久必分,分久必合。 雞兔同籠問題 基本概念:雞兔同籠問題又稱為置換問題、假設(shè)問題,就是把假設(shè)錯(cuò)的那部分置換出來; 基本思路: ?、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣): ?、诩僭O(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少; ?、勖總€(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因; ?、茉俑鶕?jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。 基本公式: ?、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)總頭數(shù)-總腳數(shù))(兔腳數(shù)-雞腳數(shù)) ?、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)總頭數(shù))(兔腳數(shù)一雞腳數(shù)) 關(guān)鍵問題:找出總量的差與單位量的差。 簡(jiǎn)單方程 代數(shù)式:用運(yùn)算符號(hào)(加減乘除)連接起來的字母或者數(shù)字。 方程:含有未知數(shù)的等式叫方程。 列方程:把兩個(gè)或幾個(gè)相等的代數(shù)式用等號(hào)連起來。 列方程關(guān)鍵問題:用兩個(gè)以上的不同代數(shù)式表示同一個(gè)數(shù)。 等式性質(zhì):等式兩邊同時(shí)加上或減去一個(gè)數(shù),等式不變;等式兩邊同時(shí)乘以或除以一個(gè)數(shù)(除0),等式不變。 移項(xiàng):把數(shù)或式子改變符號(hào)后從方程等號(hào)的一邊移到另一邊; 移項(xiàng)規(guī)則:先移加減,后變乘除;先去大括號(hào),再去中括號(hào),最后去小括號(hào)。 加去括號(hào)規(guī)則:在只有加減運(yùn)算的算式里,如果括號(hào)前面是“+”號(hào),則添、去括號(hào),括號(hào)里面的運(yùn)算符號(hào)都不變;如果括號(hào)前面是“-”號(hào),添、去括號(hào),括號(hào)里面的運(yùn)算符號(hào)都要改變;括號(hào)里面的數(shù)前沒有“+”或“-”的,都按有“+”處理。 移項(xiàng)關(guān)鍵問題:運(yùn)用等式的性質(zhì),移項(xiàng)規(guī)則,加、去括號(hào)規(guī)則。 乘法分配率:a(b+c)=ab+ac 解方程步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng);⑤求解; 方程組:幾個(gè)二元一次方程組成的一組方程。 解方程組的步驟:①消元;②按一元一次方程步驟。 消元的方法:①加減消元;②代入消元。 循環(huán)小數(shù) 一、把循環(huán)小數(shù)的小數(shù)部分化成分?jǐn)?shù)的規(guī)則 ?、偌冄h(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):將一個(gè)循環(huán)節(jié)的數(shù)字組成的數(shù)作為分子,分母的各位都是9,9的個(gè)數(shù)與循環(huán)節(jié)的位數(shù)相同,最后能約分的再約分。 ②混循環(huán)小數(shù)小數(shù)部分化成分?jǐn)?shù):分子是第二個(gè)循環(huán)節(jié)以前的小數(shù)部分的數(shù)字組成的數(shù)與不循環(huán)部分的數(shù)字所組成的數(shù)之差,分母的頭幾位數(shù)字是9,9的個(gè)數(shù)與一個(gè)循環(huán)節(jié)的位數(shù)相同,末幾位是0,0的個(gè)數(shù)與不循環(huán)部分的位數(shù)相同。 二、分?jǐn)?shù)轉(zhuǎn)化成循環(huán)小數(shù)的判斷方法: ①一個(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中既含有質(zhì)因數(shù)2和5,又含有2和5以外的質(zhì)因數(shù),那么這個(gè)分?jǐn)?shù)化成的小數(shù)必定是混循環(huán)小數(shù)。 ?、谝粋€(gè)最簡(jiǎn)分?jǐn)?shù),如果分母中只含有2和5以外的質(zhì)因數(shù),那么這個(gè)分?jǐn)?shù)化成的小數(shù)必定是純循環(huán)小數(shù)。 經(jīng)濟(jì)問題 利潤(rùn)的百分?jǐn)?shù)=(賣價(jià)-成本)成本100%; 賣價(jià)=成本(1+利潤(rùn)的百分?jǐn)?shù)); 成本=賣價(jià)(1+利潤(rùn)的百分?jǐn)?shù)); 商品的定價(jià)按照期望的利潤(rùn)來確定; 定價(jià)=成本(1+期望利潤(rùn)的百分?jǐn)?shù)); 本金:儲(chǔ)蓄的金額; 利率:利息和本金的比; 利息=本金利率期數(shù); 含稅價(jià)格=不含稅價(jià)格(1+增值稅稅率); 濃度與配比 經(jīng)驗(yàn)總結(jié):在配比的過程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。 溶質(zhì):溶解在其它物質(zhì)里的物質(zhì)(例如糖、鹽、酒精等)叫溶質(zhì)。 溶劑:溶解其它物質(zhì)的物質(zhì)(例如水、汽油等)叫溶劑。 溶液:溶質(zhì)和溶劑混合成的液體(例如鹽水、糖水等)叫溶液。 基本公式:溶液重量=溶質(zhì)重量+溶劑重量; 溶質(zhì)重量=溶液重量濃度; 濃度= 100%= 100% 理論部分小練習(xí):試推出溶質(zhì)、溶液、溶劑三者的其它公式。 經(jīng)驗(yàn)總結(jié):在配比的過程中存在這樣的一個(gè)反比例關(guān)系,進(jìn)行混合的兩種溶液的重量和他們濃度的變化成反比。 時(shí)鐘問題—鐘面追及 基本思路:封閉曲線上的追及問題。 關(guān)鍵問題:①確定分針與時(shí)針的初始位置; ?、诖_定分針與時(shí)針的路程差; 基本方法: ?、俜指穹椒ǎ? 時(shí)鐘的鐘面圓周被均勻分成60小格,每小格我們稱為1分格。分針每小時(shí)走60分格,即一周;而時(shí)針只走5分格,故分針每分鐘走1分格,時(shí)針每分鐘走1/12分格。 ?、诙葦?shù)方法: 從角度觀點(diǎn)看,鐘面圓周一周是360,分針每分鐘轉(zhuǎn)360/60 度,即6,時(shí)針每分鐘轉(zhuǎn)360/12*60 度,即1/2 度 時(shí)鐘問題—快慢表問題 基本思路: 1、 按照行程問題中的思維方法解題; 2、 不同的表當(dāng)成速度不同的運(yùn)動(dòng)物體; 3、 路程的單位是分格(表一周為60分格); 4、 時(shí)間是標(biāo)準(zhǔn)表所經(jīng)過的時(shí)間; 5、 合理利用行程問題中的比例關(guān)系。 幾何面積 基本思路: 在一些面積的計(jì)算上,不能直接運(yùn)用公式的情況下,一般需要對(duì)圖形進(jìn)行割補(bǔ),平移、旋轉(zhuǎn)、翻折、分解、變形、重疊等,使不規(guī)則的圖形變?yōu)橐?guī)則的圖形進(jìn)行計(jì)算;另外需要掌握和記憶一些常規(guī)的面積規(guī)律。 常用方法: 1. 連輔助線方法 2. 利用等底等高的兩個(gè)三角形面積相等。 3. 大膽假設(shè)(有些點(diǎn)的設(shè)置題目中說的是任意點(diǎn),解題時(shí)可把任意點(diǎn)設(shè)置在特殊位置上)。 4. 利用特殊規(guī)律 ?、俚妊苯侨切危阎我庖粭l邊都可求出面積。(斜邊的平方除以4等于等腰直角三角形的面積) ②梯形對(duì)角線連線后,兩腰部分面積相等。 ?、蹐A的面積占外接正方形面積的78.5%。 邏輯推理 基本方法簡(jiǎn)介: ?、贄l件分析—假設(shè)法:假設(shè)可能情況中的一種成立,然后按照這個(gè)假設(shè)去判斷,如果有與題設(shè)條件矛盾的情況,說明該假設(shè)情況是不成立的,那么與他的相反情況是成立的。例如,假設(shè)a是偶數(shù)成立,在判斷過程中出現(xiàn)了矛盾,那么a一定是奇數(shù)。 ?、跅l件分析—列表法:當(dāng)題設(shè)條件比較多,需要多次假設(shè)才能完成時(shí),就需要進(jìn)行列表來輔助分析。列表法就是把題設(shè)的條件全部表示在一個(gè)長(zhǎng)方形表格中,表格的行、列分別表示不同的對(duì)象與情況,觀察表格內(nèi)的題設(shè)情況,運(yùn)用邏輯規(guī)律進(jìn)行判斷。 ?、蹢l件分析——圖表法:當(dāng)兩個(gè)對(duì)象之間只有兩種關(guān)系時(shí),就可用連線表示兩個(gè)對(duì)象之間的關(guān)系,有連線則表示“是,有”等肯定的狀態(tài),沒有連線則表示否定的狀態(tài)。例如A和B兩人之間有認(rèn)識(shí)或不認(rèn)識(shí)兩種狀態(tài),有連線表示認(rèn)識(shí),沒有表示不認(rèn)識(shí)。 ④邏輯計(jì)算:在推理的過程中除了要進(jìn)行條件分析的推理之外,還要進(jìn)行相應(yīng)的計(jì)算,根據(jù)計(jì)算的結(jié)果為推理提供一個(gè)新的判斷篩選條件。 ?、莺?jiǎn)單歸納與推理:根據(jù)題目提供的特征和數(shù)據(jù),分析其中存在的規(guī)律和方法,并從特殊情況推廣到一般情況,并遞推出相關(guān)的關(guān)系式,從而得到問題的解決。 綜合行程 基本概念:行程問題是研究物體運(yùn)動(dòng)的,它研究的是物體速度、時(shí)間、路程三者之間的關(guān)系. 基本公式:路程=速度時(shí)間;路程時(shí)間=速度;路程速度=時(shí)間 關(guān)鍵問題:確定運(yùn)動(dòng)過程中的位置和方向。 相遇問題:速度和相遇時(shí)間=相遇路程(請(qǐng)寫出其他公式) 追及問題:追及時(shí)間=路程差速度差(寫出其他公式) 流水問題:順?biāo)谐?(船速+水速)順?biāo)畷r(shí)間 逆水行程=(船速-水速)逆水時(shí)間 順?biāo)俣?船速+水速 逆水速度=船速-水速 靜水速度=(順?biāo)俣?逆水速度)2 水 速=(順?biāo)俣?逆水速度)2 流水問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的速度,參照以上公式。 過橋問題:關(guān)鍵是確定物體所運(yùn)動(dòng)的路程,參照以上公式。 主要方法:畫線段圖法 基本題型:已知路程(相遇路程、追及路程)、時(shí)間(相遇時(shí)間、追及時(shí)間)、速度(速度和、速度差)中任意兩個(gè)量,求第三個(gè)量。 比和比例 比:兩個(gè)數(shù)相除又叫兩個(gè)數(shù)的比。比號(hào)前面的數(shù)叫比的前項(xiàng),比號(hào)后面的數(shù)叫比的后項(xiàng)。 比值:比的前項(xiàng)除以后項(xiàng)的商,叫做比值。 比的性質(zhì):比的前項(xiàng)和后項(xiàng)同時(shí)乘以或除以相同的數(shù)(零除外),比值不變。 比例:表示兩個(gè)比相等的式子叫做比例。a:b=c:d或 比例的性質(zhì):兩個(gè)外項(xiàng)積等于兩個(gè)內(nèi)項(xiàng)積(交叉相乘),ad=bc。 正比例:若A擴(kuò)大或縮小幾倍,B也擴(kuò)大或縮小幾倍(AB的商不變時(shí)),則A與B成正比。 反比例:若A擴(kuò)大或縮小幾倍,B也縮小或擴(kuò)大幾倍(AB的積不變時(shí)),則A與B成反比。 比例尺:圖上距離與實(shí)際距離的比叫做比例尺。 按比例分配:把幾個(gè)數(shù)按一定比例分成幾份,叫按比例分配。 完全平方數(shù) 完全平方數(shù)特征: 1. 末位數(shù)字只能是:0、1、4、5、6、9;反之不成立。 2. 除以3余0或余1;反之不成立。 3. 除以4余0或余1;反之不成立。 4. 約數(shù)個(gè)數(shù)為奇數(shù);反之成立。 5. 奇數(shù)的平方的十位數(shù)字為偶數(shù);反之不成立。 6. 奇數(shù)平方個(gè)位數(shù)字是奇數(shù);偶數(shù)平方個(gè)位數(shù)字是偶數(shù)。 7. 兩個(gè)相臨整數(shù)的平方之間不可能再有平方數(shù)。 平方差公式:X2-Y2=(X-Y)(X+Y) 完全平方和公式:(X+Y)2=X2+2XY+Y2 完全平方差公式:(X-Y)2=X2-2XY+Y2 分?jǐn)?shù)與百分?jǐn)?shù)的應(yīng)用 基本概念與性質(zhì): 分?jǐn)?shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。 分?jǐn)?shù)的性質(zhì):分?jǐn)?shù)的分子和分母同時(shí)乘以或除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變。 分?jǐn)?shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。 百分?jǐn)?shù):表示一個(gè)數(shù)是另一個(gè)數(shù)百分之幾的數(shù)。 常用方法: ?、倌嫦蛩季S方法:從題目提供條件的反方向(或結(jié)果)進(jìn)行思考。 ?、趯?duì)應(yīng)思維方法:找出題目中具體的量與它所占的率的直接對(duì)應(yīng)關(guān)系。 ?、坜D(zhuǎn)化思維方法:把一類應(yīng)用題轉(zhuǎn)化成另一類應(yīng)用題進(jìn)行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關(guān)系;把不同的標(biāo)準(zhǔn)(在分?jǐn)?shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標(biāo)準(zhǔn)為一倍量。 ④假設(shè)思維方法:為了解題的方便,可以把題目中不相等的量假設(shè)成相等或者假設(shè)某種情況成立,計(jì)算出相應(yīng)的結(jié)果,然后再進(jìn)行調(diào)整,求出最后結(jié)果。 ?、萘坎蛔兯季S方法:在變化的各個(gè)量當(dāng)中,總有一個(gè)量是不變的,不論其他量如何變化,而這個(gè)量是始終固定不變的。有以下三種情況:A、分量發(fā)生變化,總量不變。B、總量發(fā)生變化,但其中有的分量不變。C、總量和分量都發(fā)生變化,但分量之間的差量不變化。 ?、尢鎿Q思維方法:用一種量代替另一種量,從而使數(shù)量關(guān)系單一化、量率關(guān)系明朗化。 ?、咄堵史ǎ嚎偭亢头至恐g按照同分率變化的規(guī)律進(jìn)行處理。 ?、酀舛扰浔确ǎ阂话銘?yīng)用于總量和分量都發(fā)生變化的狀況。 余數(shù)、同余與周期 一、同余的定義: ?、偃魞蓚€(gè)整數(shù)a、b除以m的余數(shù)相同,則稱a、b對(duì)于模m同余。 ②已知三個(gè)整數(shù)a、b、m,如果m|a-b,就稱a、b對(duì)于模m同余,記作a≡b(mod m),讀作a同余于b模m。 二、同余的性質(zhì): ?、僮陨硇裕篴≡a(mod m); ?、趯?duì)稱性:若a≡b(mod m),則b≡a(mod m); ③傳遞性:若a≡b(mod m),b≡c(mod m),則a≡ c(mod m); ④和差性:若a≡b(mod m),c≡d(mod m),則a+c≡b+d(mod m),a-c≡b-d(mod m); ⑤相乘性:若a≡ b(mod m),c≡d(mod m),則ac≡ bd(mod m); ?、蕹朔叫裕喝鬭≡b(mod m),則an≡bn(mod m); ?、咄缎?若a≡ b(mod m),整數(shù)c,則ac≡ bc(mod mc); 三、關(guān)于乘方的預(yù)備知識(shí): ①若A=ab,則MA=Mab=(Ma)b ②若B=c+d則MB=Mc+d=McMd 四、被3、9、11除后的余數(shù)特征: ?、僖粋€(gè)自然數(shù)M,n表示M的各個(gè)數(shù)位上數(shù)字的和,則M≡n(mod 9)或(mod 3); ?、谝粋€(gè)自然數(shù)M,X表示M的各個(gè)奇數(shù)位上數(shù)字的和,Y表示M的各個(gè)偶數(shù)數(shù)位上數(shù)字的和,則M≡Y-X或M≡11-(X-Y)(mod 11); 五、費(fèi)爾馬小定理:如果p是質(zhì)數(shù)(素?cái)?shù)),a是自然數(shù),且a不能被p整除,則ap-1≡1(mod p)。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 小升初奧數(shù) 知識(shí)點(diǎn) 講解
鏈接地址:http://www.3dchina-expo.com/p-9976787.html