江西省2019中考數(shù)學 第一模擬 猜題卷課件.ppt
《江西省2019中考數(shù)學 第一模擬 猜題卷課件.ppt》由會員分享,可在線閱讀,更多相關《江西省2019中考數(shù)學 第一模擬 猜題卷課件.ppt(41頁珍藏版)》請在裝配圖網(wǎng)上搜索。
,數(shù)學第一模擬,2018江西中考猜題卷,,選擇題,,,,2.據(jù)統(tǒng)計,2018年江西省普通高考報名人數(shù)約為380000人.數(shù)字380000可用科學記數(shù)法表示為()A.0.38106B.38104C.3.8106D.3.8105,,,選擇題,4.若m,n是方程x2+2x-2020=0的兩個實數(shù)根,則m2+3m+n的值為()A.-2016B.2016C.-2018D.2018,【解題思路】∵m,n是方程x2+2x-2020=0的兩個實數(shù)根,∴m2+2m-2020=0,m+n=-2,∴m2+3m+n=m2+2m+m+n=2020-2=2018.故選D.,,5.如圖所示是45的方格紙,請在其中選取一個白色的方格涂上陰影,使圖中陰影部分是一個軸對稱圖形,這樣的涂法有()A.1種B.2種C.3種D.4種,【解題思路】,,,選擇題,,,圖(1),圖(2),圖(3),,選擇題,,,,填空題,7.因式分解:4x4-4y4=.,【解題思路】原式=4(x2+y2)(x2-y2)=4(x2+y2)(x+y)(x-y).,4(x2+y2)(x+y)(x-y),8.如圖,AD∥BC,∠DBC=43,DB=BC,則∠ADC的度數(shù)為.,,111.5,,填空題,,,二,,,填空題,10.一組數(shù)據(jù)-1,3,a,的平均數(shù)是3,另一組數(shù)據(jù)-2,a,2,1,b,的眾數(shù)為2,則數(shù)據(jù)-2,a,2,1,b的中位數(shù)是.,11.已知拋物線y=x2-bx+c的頂點在x軸上,且經(jīng)過點A(m,4),點B(m+n,4)(n>0),則n=.,,,2,4,圖(1)圖(2)圖(3),,填空題,,,,,,,,(2)如圖,在?ABCD中,對角線AC與BD交于點O,AC平分∠BAD,AC=8,BD=6,求△ABC的周長.,,,,15.規(guī)定:“上升數(shù)”是一個右邊數(shù)位上的數(shù)字比左邊數(shù)位上的數(shù)字大的自然數(shù)(如23,567,3467等).建榮同學將100以內的所有兩位數(shù)寫在背面完全一樣的卡片上(每張卡片對應一個數(shù)),并把卡片洗勻后背面朝上放在桌面上.(1)建榮同學隨機抽取一張卡片,則抽取到“上升數(shù)”是事件;(2)建榮同學隨機抽取一張卡片,求抽到的卡片上的兩位數(shù)是“上升數(shù)”的概率.,,隨機,【參考答案及評分標準】(1)隨機(2分),,,,16.如圖,已知A,B為x軸上的兩點,以AB為邊作矩形ABCD,且點A,C的坐標分別為(-8,0),(-2,4).現(xiàn)將矩形ABCD向右平移4個單位后,再向上平移2個單位得到矩形EFGH.(1)請求出點H的坐標;(2)若矩形ABCD與矩形EFGH關于點P中心對稱,請求出點P的坐標.,【參考答案及評分標準】(1)∵四邊形ABCD是矩形,點C的坐標為(-2,4),∴點B的坐標為(-2,0),∴AD=BC=4.(1分)又∵點A的坐標為(-8,0),∴點D的坐標為(-8,4).(2分)又由平移的性質可得點H的坐標為(-4,6).(3分),,(2)如圖,連接BH,CE,相交于點P,點P即為矩形ABCD與矩形EFGH的對稱中心,(4分),,,17.如圖,AB是☉O的直徑,平行四邊形ACDE的一邊在直徑AB上,點E在☉O上.請僅用無刻度的直尺,分別按下列要求畫圖.(1)如圖(1),當點D在☉O上時,請你在AB上取點P并連接DP,使DP⊥AB于點P;(2)如圖(2),當點D在☉O內時,請你在AB上取點Q并連接EQ,使EQ⊥AB于點Q.,圖(1)圖(2),,【參考答案及評分標準】(1)如圖(1),DP即為所求.(3分),(2)如圖(2),EQ即為所求.(6分),圖(1)圖(2),,18.某市為落實“真扶貧、扶真貧”精神,打好“精準扶貧”攻堅戰(zhàn),提高幫扶干部掌握政策的能力,隨機對部分幫扶干部就“你是否了解‘兩不愁,三保障’政策”進行電話調查,并將調查結果(有效通話)統(tǒng)計后繪制成如下不完整的統(tǒng)計表和扇形統(tǒng)計圖.,請結合圖表信息解答下列問題:(1)該市這次隨機抽取了名幫扶干部進行電話調查;(2)確定統(tǒng)計表中a,b,c的值:a=,b=,c=;(3)在統(tǒng)計圖中“了解”所在扇形的圓心角是度;(4)若該市共有1500名幫扶干部,請你估計該市對“兩不愁、三保障”政策非常了解的幫扶干部有多少人.,200,90,0.35,0.05,126,,,19.有一款如圖(1)所示的健身器材,可通過調節(jié)AB的長度來調節(jié)座椅MN的高度,其平面示意圖如圖(2)所示,經(jīng)測量,AD到地面PQ的距離為3cm,點C到地面的距離為28cm,AD與DE的夾角為75,AC與AD的夾角為45,且DE∥AB,座椅MN∥AD.(1)求AC的長;(2)在調節(jié)AB的長度時,∠BCA的度數(shù)和BC的長度隨之變化.已知當∠BCA為90時,M恰好為BC的中點.請求出此時座椅MN的高度.(結果保留根號),圖(1)圖(2),,,,,,,,,,21.如圖,☉O的直徑AB的長為10cm,弦AC的長為6cm,∠ACB的平分線交☉O于點D,BE⊥CD于點E,連接AD,BD和EO.(1)請判斷EO與BC的位置關系,并說明理由.(2)求OE的長.,,,,22.某數(shù)學活動小組在做三角形的拓展圖形,研究其性質時,經(jīng)歷了如下過程.操作發(fā)現(xiàn)(1)①如圖(1),B為線段CE上一點,分別以BC,BE為邊作正方形ABCD與正方形BEFG,點P為BC上一點,且CP=BE,連接DP,FP,那么DP與FP有什么關系?直接寫出答案.②如圖(2),B為線段CE上一點,分別以BC,BE為斜邊作等腰直角三角形ABC與等腰直角三角形DBE,點P為CE的中點,連接AP,DP,那么AP與DP有什么數(shù)量關系?請給予證明.,圖(1)圖(2),,數(shù)學思考(2)如圖(3),B為線段CE上一點,分別以BC,BE為斜邊作直角三角形ABC與直角三角形DBE,且△ABC∽△DBE,點P為CE的中點,連接AP,DP,那么AP與DP有什么數(shù)量關系?請給予證明.,拓展探究(3)如圖(4),B為線段CE外一點,連接BC,BE,分別以BC,BE為斜邊作直角三角形ABC與直角三角形DBE,且△ABC∽△DBE,點P為CE的中點,連接AP,DP,那么(2)中的結論還成立嗎?若成立,請給予證明;若不成立,請說明理由.,圖(3)圖(4),,【參考答案及評分標準】(1)①DP=FP,DP⊥FP.(2分)②AP=PD.(3分)證明:如圖(1),過點A作AM⊥BC于點M,過點D作DN⊥BE于點N,,,圖(1),,,,圖(2),,(3)成立.(8分),,圖(3),,23.定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),且拋物線L:y=ax2+bx+c的特征數(shù)為[2,-m,m-2].(1)若m=0,求拋物線L的頂點坐標,并判斷(1,0)是否在拋物線L上.(2)隨著m的變化,拋物線L的形狀和其在平面直角坐標系中的位置也發(fā)生變化,在m的變化過程中,是否存在一個定點,使得m不論取何值,拋物線L總是經(jīng)過該點?若存在,求出該點的坐標;若不存在,請說明理由.(3)設拋物線L的頂點為P,且與x軸相交于點A,B(點A在點B的左側),當△APB為直角三角形時,求方程ax2+bx+c+2(x-1)2=0的解.,,【解題思路】(1)將m=0代入[2,-m,m-2]求出拋物線L的特征數(shù),進而得出拋物線L的解析式和頂點坐標,然后將(1,0)代入解析式進行判斷.(2)利用特征數(shù)的定義,用含m的式子表示出拋物線的解析式,并將解析式變形為y=(x-1)[2(x+1)-m],即可得出結果.(3)先將方程變形,用含m的式子表示出方程的根,然后分點A的坐標為(1,0)和點B的坐標為(1,0)兩種情況討論,因為△APB為等腰直角三角形,所以根據(jù)等腰直角三角形的性質可得到點A到拋物線對稱軸的距離與頂點P到x軸的距離相等,構建方程即可求出m的值,進而求得方程的根.,,,,,- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 江西省2019中考數(shù)學 第一模擬 猜題卷課件 江西省 2019 中考 數(shù)學 第一 模擬 猜題卷 課件
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-11879071.html