購買設(shè)計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預(yù)覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預(yù)覽,有不明白之處,可咨詢QQ:12401814
A GRINDING SPINDLE D. Broadley, describes the factors influencing the design and then tells how to make a grinding spindle head. Part 1 ‘Model Engineer’ 19 June 1992 [ Part 2 – 7 July 1992, Part 3 – 21 August 1992 ] The real heart of a good machine tool stems from the quality of its machine spindle. The lathe is a prime example of this statement, the lathe spindle having a particularly heavy duty to perform even in a light duty machine. However the model engineer has a requirement for a variety of light but precise machine spindles which are, with care, within the capability of the average amateur and of modest cost. This series of articles will deal mainly with the design and manufacture of a light but precise grinding spindle but will finally extend the exercise to the design of a unit capable of carrying an MT2 spindle of somewhat greater load carrying capacity. The design principles are however the same. The Grinding Spindle Much has already been written on the subject of grinding spindle head design, and it is difficult to state anything which has not been said or written before. However it is necessary to state the design principles involved. What we are after is a 4800 rpm free running and accurate spindle without end float in order basically to ensure stability of the grinding wheel. The loads involved are very low apart from loads in the grinding wheel itself and any preloads we must build into the spindle to ensure stability. These latter are also low but important to get right. Finally we need to be able to replace wheels easily and accurately in order to avoid regrinding and hence wheel wastage every time we change a wheel. The satisfaction of making such a spindle which, apart from the wheel itself, looks as though it is stationary is reward enough for the effort involved apart from the fact that we finish up with a most universally useful tool. The main element of our grinding spindle is to choose the correct bearings in an accurately machined housing with correct internal preload. All preloads consists of is a method of spring loading one of the two ball races to adjust end float caused by axial tolerances (the difficulty of accurately measuring the distance between the inner races on the shaft and outer races in the housing) and any differential thermal expansion as inevitably one part of the spindle achieves working temperatures compared with another. A good high speed spindle is that critical. The bearings chosen are relatively inexpensive angular contact or ‘magneto’ type which lend themselves particularly well to simple and practical methods of preload. There are numerous ways of providing the necessary preload but the one chosen here is what I consider to give the most reliable and, for the amateur the simplest and least expensive method. It is based on bearing disc springs which are readily available and which cover the complete range of sizes for the projects in hand. They can be obtained through the many bearing factors in most large towns and also are available from N.S.&A. Hemingway. The spring characteristic for single and multi-stacked discs is shown in Fig. 1. it being necessary to use 4 springs for this application in order to achieve the preload of 5 to 6 lbs requiring a compression of 15 to 20 thou respectively, but more about this later. Enough of the preamble, how do we go about making it! Fig. 2 shows an exploded view of the system. The casing, spindle and the bearing spacer require some fairly accurate machining so take your time. Free cutting mild steel is recommended throughout for which well ground HSS tools are quite capable of giving the accuracy and finish that we require. The extent to which strength is lost due to addition of a trace of lead is so small in the vast majority of model applications I am amazed that it is not more widely used and available. It is perfectly adequate for this project and its advantages in machineability is in my view outstanding. Drawing 1 Starting with the spindle housing (Item 1) mount one end in the 4 jaw and the other in the fixed steady end true it up with the D.T1. after cleaning off any rust etc. from the outer diameter. This arrangement is shown in Photo 2 [part 2]. You should be able to achieve a very few tenths (of a thou.) with care. Drill the casing through and bore it out to 1.25 in. at least half way and preferably through. Carefully bore for the outer ball race. If you are using a magneto bearing the outer race is separable and can be used as a reference if this helps (carefully clean it afterwards). The bore you need for a light push fit is only 3 tenths smaller than the outside of the bearing. You can bore for a 0.002 in. clearance and use Loctite if you wish. I personally go for a light push fit every time but if a mistake is made I would not hesitate to use the remarkable Loctite products, in this case Loctite 64 Bearing Fit. Next thread the end 32 TPI x ? in, before turning the casing round, truing it up again with the D.T.I. and repeating the procedure from the other end but this time making the outer race a nice sliding fit in the casing. Finally thread what is the drive end 32 TPI also. Just a word on screwcutting in the lathe. The depth of thread for 32 TBI Whitworth form is 0.031 in. but if you are using a pointed screwcutting tool, most do, do not forget to add on the extra sixth for the bottom of the thread i.e. the actual depth of thread is 0.036 in. The spindle (Item 2) is handled in a similar way to the casing but from a piece of 1 in. OD FCMS and leaving sufficient length to machine the complete spindle, hold it in the 3 jaw and centre the free end using the fixed steady. Remove the steady and using a rotating centre carefully turn the whole of the outside of the spindle including the 7/8 in. nose. Unless you use Loctite you will require great care to achieve the necessary light push fit since the interference you require on this small diameter is only a tenth of a thou. or so but this is only necessary where the bearings locate. Lapping, which in my view docs not receive the attention it deserves, is the best way of achieving the accuracy required. If you use Loctite NOT YET. Screwcut the ?in. x 32 TPI thread in the lathe, finishing it off with a die. Next fit the fixed steady, not over the bearing location, and remove the centre. The 3/8 in. bore we are going to tackle next is accomplished by truing up the spindle, now in a fixed steady, with the D.T.l. and bore the spindle to 3/8 in. by step drilling, preferably making the final cut with the D bit. The bore is long and you are unlikely to have a long enough drill to go right through. So reverse the spindle and again using the fixed steady on the 7/8 in. nose true the outside as accurately as possible with the D.T.1. then, drill until the bores meet, leaving the last say 20 thou, to the D bit. You really can do this without being able to see the join. All that needs to be done to finish the nose is to machine the 40 deg. taper. This I did quite successfully at the same setting but you may choose to follow the procedure of Professor Chaddock in his excellent book on the Quorn Tool and Cutter Grinder. In this the whole of the spindle housing is held in the in the fixed steady, the spindle itself being driven in the preloaded bearings. I cannot fault this method but feel that beginners at least will find the method that I have outlined to be satisfactory. The necessary skill to true up a component in the lathe to the accuracies required is not that difficult, but take your time. Next tackle the bearing spacer (Item 4) to a slide fit on the spindle. The length of the tube is fairly critical to maintain the differential between the housing and the length of the spacer. This differential must be 0.168 in. to 0.173 in, to give a preload of 6 to 5 lbs. respectively. This necessitates some simple arithmetic involving measuring the length of the housing, subtracting the outer bearing recess dimensions and adding 0.173 in. as shown on the drawing to obtain the length of the spacer. You must check it this way because it is almost certain that you will not have controlled the length scales accurately enough. If you use an angular contact bearing, which are cheaper and more readily available than magneto bearings, it is necessary to adjust the length scales because they are 3mm wider, i.e. 11mm wide. Ensure that the ends of the spacer are parallel when machining it to length by supporting it in the fixed steady and again check with the D.T.I. The spacer tube is reduced at the disc spring end in order to support the stack. This diameter is important but not critical to provide the correct internal support for the disc spring stack. To repeat the length of the spacer is important as it automatically gives the correct preload and for these particular disc springs 1 lb preload = 0.004 inch. A simple way of measuring the housing and bearing recesses in order to achieve the correct length of the bearing spacer is given later. Finally make the screwed end caps which are identical. There are other ways to retain the spindle and contain the oil or grease than screwed end caps and oil seals which I have shown on the drawing. Oil seals of the full bearing diameter are readily available but in my case I was anxious to provide the maximum spacing between the bearing and the design shown does this nicely. I also machined thin brass washers between the casing and the end caps which add a decorative as well as useful oil retaining role. Whichever type of seal you use it is advisable to lap the seating to speed running in and minimum wear on the seal lip. The oil seals do unfortunately give significant drag particularly when new. A light grease rather than oil and either a lapped fit or felt seal are I am sure perfectly good alternatives. The bearings are good for 20,000 rpm with grease and 25.000 rpm with oil, but please not with a grinding wheel on it. The absolute need to keep within the rpm limit of the largest wheel cannot be over emphasized (the maximum speed is stamped by law on all but the very small wheels). 6
黃河科技學(xué)院畢業(yè)設(shè)計(文獻翻譯) 第 頁
研磨主軸
D.布羅德利,介紹了設(shè)計的影響因素
然后告訴如何使磨削主軸頭
第1部分‘模型工程師’ 1992年6月19日
【第2部分 1992年7月7日,第3部分 1992年8月21日】
一個良好的機器真正的核心在于機器的主軸的質(zhì)量。機床是所陳述的最好的例子,即使是一個輕型機床的機床主軸能滿足重型機床的運作要求。然而,模型工程師需要一系列較輕的而且精密,能完成平均業(yè)余的能力和低廉的費用的機床主軸。本系列文章將主要研究與設(shè)計生產(chǎn)較輕但精密磨削主軸,并且最終將擴大到一些能夠承擔(dān)比MT2主軸更大的承載能力。盡管是同樣的設(shè)計原則。
磨削主軸
磨削主軸核心設(shè)計的大部分已被寫入,但是它是難以描述之前并未說到或?qū)懭氲臓顟B(tài)。盡管所涉及的設(shè)計原則已經(jīng)進行了必要的說明。我們所追求的是4800RPM自由運行和不準(zhǔn)確的最終浮動主軸以確保砂輪的穩(wěn)定。除了涉及砂輪本身和任何預(yù)裝的負(fù)載的負(fù)載非常低,我們必須建設(shè)確保砂輪的穩(wěn)定。即使后者低,但重要的是得到正確的。最終我們需要的是能夠容易和準(zhǔn)確取代車輪以避免磨削和我們每次改變車輪時形成的浪費。一個完美的的主軸,除了車輪本身,看起來如下:雖然它是靜止的,是一個有足夠的能力能完成所涉及的方面最普遍有用的工具。
磨削主軸的關(guān)鍵部分是選擇正確的軸承精確加工與正確的內(nèi)部預(yù)緊外殼。所有預(yù)載是由彈簧承載的方法加載的兩個球之一,調(diào)整底部浮動造成(軸的內(nèi)圈和外殼的外圈之間的精確測量的誤差)主軸的熱膨脹系數(shù)達到與他人工作相比差不多的溫度。一個良好的高速主軸是關(guān)鍵。
軸承選擇相對便宜的角接觸或“磁”型這本身特別預(yù)緊簡單實用的方法。有多種方式,提供必要的預(yù)載,但一個選擇這里是我考慮給予最可靠的和常見的,最簡單和最便宜的方法。它是基于對軸承碟形彈簧,這都是現(xiàn)成的包括很多尺寸齊全的項目。他們可以在多數(shù)大城鎮(zhèn),也可從N.S.&A海明威獲得的許多軸承主要因素信息。
如圖.1所示的展示彈簧特性的單和多疊光盤。它更多的是為了實現(xiàn)這個應(yīng)用程序使用4彈簧預(yù)緊所必須的15到20磅,而你可以少壓縮5至6磅。即使有足夠的同步信號,我們?nèi)绾稳サ玫剿?。圖2顯示了這個系統(tǒng)的剖析視圖。
圖1
所以把你的時間放在套管,主軸和軸承的間隔等一些需要相當(dāng)精確加工的地方上。能滿足我們切削碳鋼的需要的磨削HSS的工具并能夠給予準(zhǔn)確性。我很驚訝添加的微量鉛的程度是絕大多數(shù)模型應(yīng)用中的并不提供廣泛應(yīng)用,僅僅提供一點。它是為這個項目完全夠用,其在機械加工的優(yōu)勢,在我看來優(yōu)秀的。
從(1項)主軸殼子的一端安裝4下顎并把它穩(wěn)定的固定在D.T1下面。然后從外徑等清洗其他的銹。這項安排是在圖片2所示[第二部分]。你應(yīng)該能夠?qū)崿F(xiàn)至少十分之一。通過套管和孔向里鉆1.25英寸。至少有一半,最好是全部通過。
圖2
繪制1
仔細(xì)觀察孔外球的核。如果您正在使用的磁軸承外圈是可分離的,一旦這有幫助(事后仔細(xì)清理),可以作為參考。你需要從外輕推它小于十分之三軸承。你可以有0.002英寸誤差。如果你想可在間隙使用樂泰。每次我都自己輕推,但如果有一個錯誤我會毫不猶豫地使用樂泰的產(chǎn)品,在這種情況下,樂泰64軸承適合。下一個線程結(jié)束在32 TPI的四分之一,轉(zhuǎn)動套管一輪之前,修整再次它與D.T.I.和重復(fù)的過程,從另一端但是這一次是外圈在外殼精密的滑合。最后線程同樣也是32 TPI驅(qū)動。只需一個指令指示車床就切螺紋。就像32 TBI的惠氏形式的螺紋深度為0.031英寸。但如果你使用的是尖切割工具,千萬不要忘記添加了額外的第六底部的線程。即線程的實際深度為0.036英寸。
主軸(2項),以類似的方式處理外殼,但是向里1英寸一部分。外徑要給機器主軸的完成留下足夠的長度,使用它里邊的3顎和中心的自由端完成穩(wěn)定固定。穩(wěn)定移除一個使用旋轉(zhuǎn)中心在主軸外7/8英寸的機頭。除非你使用樂泰,你將需要非常小心實現(xiàn)必要的輕推適合以來的干擾,你需要小于這個直徑的十分之一 ,但這僅僅是必要的軸承定位。研磨,在我看來沒有受到重視,是最好實現(xiàn)所需的精度的方式。如果你目前還沒有使用樂泰,向里切割二分之一。整理在車床×32 TPI的線程。下一步是穩(wěn)定的固定它,不要超過軸承位置,并移除中心。
向里3/8英寸鉆孔。我們下一步要解決的是修整主軸,現(xiàn)在在一個穩(wěn)定的固定情況下,與D.T.l.孔主軸。以3/8英寸加強鉆井,最好在D位。你是不可能有通過鉆孔去知道孔長。因此,扭轉(zhuǎn)主軸,并再次使用的7/8英寸的機頭穩(wěn)定準(zhǔn)確的固定在D.T.1。然后,鉆孔直到滿足鉆孔的需要,留下最后20英豪在你的D位。這一步主要是看能不能看到結(jié)合處。所有需要都是為滿足機頭能在40攝氏度和錐度運行。
在同樣配置的情況下我做的非常成功,但你可以選擇按照教授差多克在他優(yōu)秀工具書過程刀具磨床所說的。在這整個主軸外殼進行穩(wěn)定的固定,帶動預(yù)緊軸承主軸本身。我找不到反對這種方法的理由,但覺得初學(xué)者至少會找到方法,起碼有提綱我是滿意的。但把你的時間放在車床的一個組成部分必要的技能,以真正達到精度要求并不難。
接下來處理的是合適主軸的軸承墊片(4項)。管道的長度相當(dāng)關(guān)鍵,以保持外殼和墊環(huán)之間的間隔的距離。這種誤差是必須在0.168英寸到0.173英寸,能給予預(yù)緊6至5磅。這需要進行外殼的長度測量,減去外軸承凹槽的尺寸和增加0.173英寸進行簡單的計算顯示在圖紙上,以獲取間隔的長度。您必須檢查這種方式,因為它幾乎可以肯定你不會獲得足夠的精確控制尺度。如果您使用角接觸球軸承,這是更便宜和更容易獲得磁軸承,它是需要調(diào)整的尺度,因為它是比3毫米更寬的,即11mm寬。
確保墊片的兩端是平行加工時它的長度能支持它進行穩(wěn)定的固定,并再次檢查與DTI間隔管減少碟形彈簧的一端,以支持堆棧。這個直徑很重要但不是最關(guān)鍵的以提供正確的內(nèi)部蝶形彈簧。重復(fù)間隔的長度是很重要的,因為它會自動給出正確的預(yù)緊力,為這些特殊的碟形彈簧1磅預(yù)緊= 0.004英寸。用一個簡單的方法測量的外殼和軸承凹槽以達到正確的后軸承墊圈長度。
最后擰緊端蓋。還有其他的方法維持主軸,并控制擰緊端蓋時的油或油脂我已在圖紙上顯示。油封軸承直徑都是現(xiàn)成的,但在我來說希望提供最大軸承和設(shè)計之間的間距更好的完成它。同樣加工薄的黃銅墊圈之間的外殼和端蓋添加裝飾也要保持有用的油。無論您是否使用什么類型的油封利用基座的位置以獲得在密封口的加快運行速度和最小磨損。新油封不能提供顯著的阻力。潤滑油而不是石油和一個的合適的線圈或毛氈密封我完全相信是良好的替代品。軸承最好是為用潤滑油每分鐘20,000轉(zhuǎn)和用石油每分鐘25.000轉(zhuǎn),但不要有砂輪在上面。保持最大的車輪的轉(zhuǎn)速限制是必要的但不能過分強調(diào)(除了非常小的輪子之外所有最高速度輪子都加蓋)。
畢業(yè)設(shè)計
文獻翻譯
院(系)名稱
工學(xué)院機械系
專業(yè)名稱
機械設(shè)計制造及其自動化
學(xué)生姓名
陳龍
指導(dǎo)教師
穆國華
2012年 03 月 10 日
黃河科技學(xué)院本科畢業(yè)設(shè)計任務(wù)書
工 學(xué)院 機械 系 機械設(shè)計制造及其自動化 專業(yè) 2008 級 3 班
學(xué)號 學(xué)生 指導(dǎo)教師
畢業(yè)設(shè)計(論文)題目
對輥機框架系統(tǒng)設(shè)計
畢業(yè)設(shè)計(論文)工作內(nèi)容與基本要求(目標(biāo)、任務(wù)、途徑、方法,應(yīng)掌握的原始資料(數(shù)據(jù))、參考資料(文獻)以及設(shè)計技術(shù)要求、注意事項等)(紙張不夠可加頁)
主要內(nèi)容:
1、輥機破碎機框架系統(tǒng)的類型與分析研究;
2、對輥機框架系統(tǒng)的設(shè)計原則與組成;
3、對輥機框架系統(tǒng)的設(shè)計說明書與設(shè)計圖紙;
4、寫出文獻綜述,翻譯外文資料。
基本要求:
1、所設(shè)計系統(tǒng)應(yīng)符合生產(chǎn)實際,工作可靠,經(jīng)濟實用,維修方便;
2、所設(shè)計系統(tǒng)應(yīng)有創(chuàng)新點,并選1—2個典型器件進行校核;
3、在設(shè)計中應(yīng)發(fā)揚團隊精神,綜合運用在校期間所學(xué)的專業(yè)知識和技能。
主要參考資料:
對輥機設(shè)計有關(guān)資料、機械電氣設(shè)計手冊、教科書及相關(guān)中外文期刊。
時間及任務(wù)安排:
1、1----2周:考察調(diào)研,實習(xí)參觀,收集資料,完成開題報告;
2、3----4周:完成文獻翻譯,文獻綜述,初步擬定總體設(shè)計方案;
3、5---9周:完成設(shè)計說明書初稿,基本完成課題設(shè)計、計算繪圖等工作;
4、10-11周: 完成設(shè)計說明書、設(shè)計圖紙,整理完成所有設(shè)計文件;
5、第12 周:做好答辯前的所有準(zhǔn)備工作。
?
畢業(yè)設(shè)計(論文)時間: 2012年 2 月 13 日至 2012 年 5 月 6 日
計 劃 答 辯 時 間: 2012年 5 月 19 日
專業(yè)(教研室)審批意見:
?
審批人(簽字):
日 期:
黃河科技學(xué)院畢業(yè)設(shè)計開題報告表
課題名稱
對輥機框架系統(tǒng)設(shè)計
課題來源
教師擬訂
課題類型
AX
指導(dǎo)教師
學(xué)生姓名
專 業(yè)
機械設(shè)計制造及其自動化
學(xué) 號
一、資料準(zhǔn)備
1、通過到許昌金諾商砼實習(xí),初步了解了對輥破碎機框架系統(tǒng)的類型與性能;
2、參考了了機械設(shè)計、液壓與氣壓傳動、理論力學(xué)、材料力學(xué)等相關(guān)書籍,查閱了壓機的設(shè)計、機械電氣設(shè)計手冊等相關(guān)中外文期刊;
3、通過實習(xí)和資料、資源整合,具備了對輥機框架系統(tǒng)設(shè)計的思路。
二、設(shè)計目的及要求
1、所設(shè)計系統(tǒng)應(yīng)符合生產(chǎn)實際,工作可靠,運行成本低,工作間隙大小可調(diào),維修方便;
2、所設(shè)計的系統(tǒng)有創(chuàng)新點,并選1—2個典型器件進行計算、校核;
3、在設(shè)計中應(yīng)發(fā)揚團隊精神,綜合運用在校期間所學(xué)的相關(guān)專業(yè)知識和技能。
三、設(shè)計思路與預(yù)期成果
1、通過實地參觀、資料收集和信息整合,在參考傳統(tǒng)破碎機的基礎(chǔ)上,并嘗試著對傳統(tǒng)對輥機的缺點和不足之處做出一些改變;
2、通過資料收集和信息整合,進行對輥機框架系統(tǒng)的設(shè)計;
3、完成文獻綜述、文獻翻譯、設(shè)計說明書、設(shè)計圖紙,整理完成所有設(shè)計文件。
四、設(shè)計任務(wù)完成的階段及時間安排
1、1---2周 考察調(diào)研,實習(xí)參觀,收集資料,完成開題報告;
2、3---4周 完成文獻翻譯,文獻綜述,初步擬定總體設(shè)計方案;
3、5---9周 完成設(shè)計說明書初稿,基本完成整體設(shè)計、計算、繪圖等工作;
4、10-11周 完成設(shè)計說明書、設(shè)計圖紙,整理完成所有設(shè)計文件;
5、第12 周 做好答辯前準(zhǔn)備工作。
五、完成設(shè)計(論文)所具備的條件因素
1、在相關(guān)企業(yè)實習(xí)和對相關(guān)資料的查閱、消化、整合;
2、在以前的學(xué)習(xí)中進行多次的課程設(shè)計和生產(chǎn)實習(xí),積累了一定的實踐經(jīng)驗,為畢業(yè)設(shè)計的
進行打下了基礎(chǔ);
3、進行設(shè)計所需的軟硬件資源;
4、良好的設(shè)計環(huán)境和指導(dǎo)老師的指導(dǎo)。
指導(dǎo)教師簽名: 日期:
課題來源:(1)教師擬訂;(2)學(xué)生建議;(3)企業(yè)和社會征集;(4)科研單位提供
課題類型:(1)A—工程設(shè)計(藝術(shù)設(shè)計);B—技術(shù)開發(fā);C—軟件工程;D—理論研究;E—調(diào)研報告 (2)X—真實課題;Y—模擬課題;Z—虛擬課題
要求(1)、(2)均要填,如AY、BX等。