購買設計請充值后下載,,資源目錄下的文件所見即所得,都可以點開預覽,,資料完整,充值下載可得到資源目錄里的所有文件。。?!咀ⅰ浚篸wg后綴為CAD圖紙,doc,docx為WORD文檔,原稿無水印,可編輯。。。具體請見文件預覽,有不明白之處,可咨詢QQ:12401814
南華大學機械工程學院畢業(yè)設計(論文)
Study and Improvement for Slice Smoothness in Slicing Machine of Lotus Root
De-yong YANG ,Jian-ping HU , En-zhu WEI , Heng-qun LEI ,and Xiang-ci KONG
Key Laboratory of Modern Agricultural Equipment and Technology
Ministry of Education Jiangsu Province Jiangsu University . Zhenjiang .
Jiangsu Province .P.R.China212013
Tel.: +86-511-8;Fax:+86-511-8
yangdy@163.com
Jinhu Agricultural Mechanization Technology Extension Station . Jinhu county
Jiangsu Province .P.R.China 211600
Abstract: Concerning the problem of the low cutting quality and the bevel edge in the piece of lotus root, the reason was analyzed and the method of improvement was to reduce the force in the vertical direction of link to knife. 3D parts and assemblies of cutting mechanism in slicing machine of lotus were created under PRO/E circumstance. Based on virtual prototype technology, the kinematics and dynamics analysis of cutting mechanism was simulated with ADAMS software, the best slice of time that is 0.2s~0.3s was obtained,and the curve of the force in the vertical direction of link to knife was obtained. The vertical force of knife was changed according with the change of the offset distance of crank. Optimization results of the offest distance of crank showed the vertical force in slice time almost is zero when the offset distance of crank is -80mm. Tests show that relative error of thickness of slicing is less than 10% after improved design, which is able to fully meet the technical requirements.
Keywords: lotus root; cutting mechanism; smoothness; optimization
1 Introduction
China is a country of producing lotus toot, lotus root system of semi-finished products of domestic consumption and external demand for exports is relatively large. In order to improve efficiency, reduce labor intensity, the group work, drawing on the principle of the artificial slice based on the design and development of a new type of lotus root slice (Bi Wei and Hu Jianping, 2006). This new type of slice solved easily broken cutting, stick knives, hard to clean up and other issues, but the process appears less smooth cutting, and some have a problem of hypotenuse piece of root. In this paper, analyzing cutting through the course of slice knife, the reasons causing hypotenuse was found, and the corresponding improvement of methods was proposed and was verified by the experiments.
2 Structure of Cutting Mechanism of Slicing Machine
Cutting mechanism of the quality of slice lotus root is the core of the machine, the performance of its direct impact on the quality of slice. Virtual prototyping of cutting mechanism of slice lotus root (Fig.1) was built by using PRO/E, and mechanism diagram of the body is shown in Fig.2. Cutting principle of lotus slicer adopted in the cardiac type of slider-crank mechanism was to add materials inside, which can be stacked several lotus root, lotus root to rely on the upper part of the self and the lower part of the lotus press down, so that it arrives in the material under the surface of the baffle. While slider-crank mechanism was driven by motor, the knife installed on the slider cut lotus root. In the slice-cutting process it was found that parallelism of the surface at both ends of part of piece lotus was not enough, which can not meet the technical requirements for processing.
Fig.1 Virtual prototyping of cutting mechanism
Fig.2 Diagram of cutting mechanism
Study and improvement for slice smoothness in slicing machine of lotus root.
3 The Cause of the Bevel Edge
Uneven thickness and bevel edge of cutting were related with forces on the slice knife in the process of cutting. In accordance with cutting mechanism (Fig.2), without taking into account the friction and weight, the direction of force F of point C was along the link. Force F may be decomposed with a horizontal direction force component and a vertical direction force component. The horizontal force component pushed the knife moving for cutting, but the vertical force component caused the knife moving along the vertical direction. Because of the gap between the slider and the rail, the vertical force component made the blade deforming during the movement, and knife could not move along the horizontal direction to cut lotus root, which caused the emergence of bevel edge. Thus, to reduce or eliminate the vertical force component in the cutting-chip was key to solve the problem of bevel edge and improve the quality of cutting.
When crank speed was 69~90r/min, the horizontal and vertical direction of the force curve of point C connecting link and the blade hinge are shown in Fig.3 and Fig.4 respectively. As can be seen from the chart, with the crank speed improvement the horizontal and vertical direction of the force in point C also increased. The horizontal force changed relatively stable during 0s~0.2s, which was conducive to cutting lotus, but the vertical force increased gradually. The more the vertical force was, the more detrimental to the quality cutting.
Fig.3 Horizontal force of C
Fig.4 Vertical force of C
4 Simulation and Optimization
If improving flatness of the slicer, the structure was optimized to reduce the vertical force component, so as far as possible the level of cutting blade.
When crank speed was 60~90r/min the velocity curve and acceleration curve of the knife center of mass are shown in Fig.5 and Fig.6 respectively. According to the speed curve, the speed of the knife center of mass was relatively large in a period of 0.2s~0.3s. In accordance with the requirements that the knife should have a higher speed during cutting lotus, so this period time was more advantageous to cutting than other terms. According to acceleration curve. When calculates by one cycle, the acceleration value was relatively quite small in the period of time, 0.15s~0.3s compared with other time section. Which indicated that the change of velocity was relatively small, simultaneously the force of inertia was small, and the influence of vibration caused by the force was small to the slicer. Therefore,this period of time, 0.2s~0.3s, to cut root piece was advantageous in enhances the cutting quality of lotus root piece.
Fig.5 Velocity curve of center of mass of knife
Fig.6 Acceleration curve of center of mass of knife
Based on the above analysis, the vertical force component between link and the knife was the main reason for bevel edge. According to the characteristics of slider-crank mechanism, reducing the vertical force on the knife in the period of cutting time by altering crank offest was tried to enhance the quality of the cutting. When crank speed was 60r/min, the crank eccentricity was optimized. When the offest of the crank was 40mm, 20mm, 0mm, -20mm, -40mm, -80mm, -120mm respectively, the mechanism was simulated and the vertical force curves under different crank eccentricity were obtained, as shown in Fig.7.
Fig.7 vertical force curves in different offest
Fig.7 indicates that: When the eccentricity was positive, the vertical force on point C increased gradually in 0.2s~0.3s with the increase of crank oddest: When the eccentricity was negative, the force decreased gradually first and then begun to increase along with -80mm. So when the offest was -80mm, the numerical of the force in 0.2s~0.3s achieved the minimum and the quality of cutting was the best.
When the crank rotated in the other speed, there were the same optimization results. Fig.8 show the curve of vertical force in the offest of 0mm and -80mm when the speed of crank was 80r/min. From the Fig.8 it is obvious that vertical direction of the force of point C in 0.2s~0.3s reduced a lot when the eccentricity is -80mm. Therefore, the vertical force could be reduced by optimizing the slider-crank mechanism of eccentricity.
Fig.8 Vertical force of C
5 Experimental Analysis
The relative error of thickness of lotus root piece reflects the quality of cutting. Which is generally controlled of 10%. There always existed bevel edge phenomenon and the relative error of thickness was about 15% before structural optimization and improvement, which was difficult to meet the technical requirements. The offset in the slider-crank mechanism was optimized, and its structure was improved according to the results of optimization. After improvement cutting test were done in the conditions of crank speed for 80~110r/min and statistical data about the relative error of thickness was shown in Table.1. Four levels were separated in the experiment, three times for each level.
Table 1 Relative error of thickness of slicing
NO
Crank speed (r/min)
80
90
100
110
1
6.6%
6.4%
8.2%
9.5%
2
5.3%
6.1%
8.5%
9.2%
2
6.4%
7.9%
7.9%
9.4%
Average
6.1%
6.8%
8.2%
9.4%
It is derived from Table.1 that the relative error of the thickness of slices could meet the technical indicators when the crank speed was 80~110r/min, especially in the crank rotation speed 80r/min, 90r/min the relative error of thickness was less than 7%,and high quality was achieved.
6 Conclusion
The vertical force component acted on the knife in the process of cutting was the main reason for surface formation and bevel edge, so the key of improving the quality was to reduce the vertical force. Through slice knife and velocity acceleration simulation analysis the best time for slicing, 0.2s~0.3s, was obtained. By optimizing the offset of the crank the vertical force during cutting time was greatly reduced when the offset was -80mm. Experiments were made after improving the design of lotus root slicer, which results showed that by changing the offset of the crank, the relative error of the thickness could fully meet the requirements of less than 10%. So the problem was basically solved that the flatness was not ideal and was the issue of bevel edge.1
References
[1] Wei,B . jianping,H.: Study of lotus root slicing techniques and design of new model,Journal of agricultural mechanization research (12),112-114(2006)(in Chinese)
[2] Enzhu, w.:the simulation and optimization on the new slicing machine of lotus root based on virtual prototype technology .jiangsu university [2008)[in Chinese)
[3] Ce ,Z .:mechanical dynamics .higher education press[1999)
[4]Xiuning ,C.:optimal design of machinery .zhejiang university press[1999)
[5]Liping,C.,yunqing,Z.,weiqun,R.: dynamic analysis of mechanical systems and application Guide ADAMS . Tsinghua university press ,Beijing(2005)
Page 8 of 8
南華大學機械工程學院畢業(yè)設計(論文)
蓮藕切片機切片平滑度的研究和改進
楊德勇 胡建平 韋恩鑄 雷恒群 孔祥次
農業(yè)設備和現(xiàn)代技術的國家重點實驗室
江蘇省教育部 江蘇大學.江蘇.鎮(zhèn)江
中國 江蘇省 212013
電話 +86-511-8:傳真+86-511-8
yangdy@163.com
金湖農業(yè)機械化技術推廣站
中國 江蘇省 211600
摘要:針對蓮藕切削質量不高和蓮藕片的斜邊問題,通過分析原因,改進的方法就是減少刀在垂直方向的力。在Pro/E的環(huán)境下創(chuàng)建了蓮藕切片機的3D零件和裝配體?;谔摂M樣機技術,切片機的運動學和動力學分析是在ADAMS軟件模擬實驗下實現(xiàn)的,獲得最佳的切削時間為0.2s~0.3s,并且得到了刀在垂直方向上的力的曲線。刀在垂直方向上的力隨著曲柄偏移量的變化而改變。曲柄的偏移量優(yōu)化結果表明,當曲柄的偏移量為-80mm時,在切削時間里的垂直方向上的力幾乎為零。測試結果表明,經(jīng)過改進設計后,切片厚度的相對誤差小于10%,這是能夠完全滿足技術要求的。
關鍵詞:蓮藕;切削機制;平滑度;優(yōu)化
1前言
中國是一個生產蓮藕的大國,蓮藕半成品系列食品的國內消費和外部的出口需求量比較大,為了提高工作效率,減輕勞動強度,設計工作組,在借鑒人工切蓮藕片原理的基礎上設計和開發(fā)一個新型的切片機(畢偉,胡建平,2006年)。這種新型的切片機容易解決切片易斷,粘刀,難清理等問題,但過程中還是出現(xiàn)不平滑切削和一些斜邊的現(xiàn)象。本文通過對切削時刀片的分析,發(fā)現(xiàn)了一些造成斜邊現(xiàn)象的原因,并提出了相應的改進方法,并通過實驗得到了驗證。
2 切片機切削結構原理
蓮藕切片的切削原理是機器的核心,性能直接影響切片的質量。在使用PRO / E平臺下建立了蓮藕切削原理的虛擬樣機(圖1),結構本身的原理圖如圖2所示。蓮藕切片機的切削原理是通過核心的曲柄滑塊機構往里面添加材料,它可以堆疊許多蓮藕,蓮藕依靠自己本身上部和下部的蓮藕,以便它能夠到達擋板的表面。曲柄滑塊機構是由電機驅動,在滑塊上安裝刀片切蓮藕。但在切削過程中,發(fā)現(xiàn)在一塊蓮藕兩端面的平行度是不足夠的,這不能滿足加工的技術要求。
圖1 蓮藕切削原理的虛擬樣機
圖2 切片原理結構圖
切片機的蓮藕片平滑度的研究和提高。
3 斜邊的原因
厚薄不均勻和斜邊問題與刀片在切削過程中的力量有關。按照結構原理(圖2),不考慮相互間摩擦和重量的因素,C點的力F的方向是沿鏈接方向。力F可以分解為一個水平方向的分力和一個垂直方向的分力。水平分力造成的刀沿垂直方向移動切削,但垂直方向上的力造成的刀沿垂直方向移動。由于滑塊和導軌之間的差距,垂直分力會使葉片在運動時變形,刀不能沿水平方向切蓮藕,導致出現(xiàn)斜邊。因此,解決斜邊的問題和提高切削質量的關鍵是減少或消除切片時的垂直分力。
當曲軸轉速為60~90轉/分鐘,C點和刀片連接部位的水平和垂直方向的力曲線如圖3和圖4所示。從圖上可以看出,當曲柄的速度提高后,C點水平和垂直方向的力也增加了,相對穩(wěn)定的水平力有利于切削蓮藕期間,但垂直方向上的力也逐漸增加。越多的垂直方向上的力,越不利于切削的質量。
圖3 C點的水平力
圖4 C點的垂直方向上的力
4 仿真和優(yōu)化
如果提高切片的平整度,結構優(yōu)化可以減少垂直分力,所以盡可能的要刀片保持水平。
當曲柄速度60~90轉/分鐘時,刀質量中心的速度曲線和加速度曲線分別如圖5和圖6所示。根據(jù)速度曲線,在0.2s~0.3s時間里,刀質量中心的速度是比較大的。按照刀應該有更高的速度來切削蓮藕的要求,這期間的時間切削比其他時間更有利。根據(jù)加速度曲線,一個周期計算,在0.15s~0.3s的時間里,相比其他的時間段加速度值是相對比較小。這表明速度的變化相對較小,同時慣性產生的力小,切片機受力引起的振動影響小。因此,在0.2s~0.3s里來切蓮藕有利于提高蓮藕片的切削質量。
圖5 刀片的質量中心速度曲線
圖6 刀片的質量中心加速度曲線
基于上述分析,刀片和鏈接之間的垂直分力是造成斜邊的主要原因。根據(jù)曲柄滑塊機構的特點,在切削時間段通過改變曲柄偏移來減少對刀垂直方向上的力,從而提高切削質量。當曲軸轉速為60轉/分鐘,曲軸偏心率得到了優(yōu)化。當曲柄偏移量分別為40mm,20mm,0mm,-20mm, -40mm, -80mm, -120mm時,在不同的偏移量下模擬其原理,獲得了垂直方向上的力曲線,如圖7所示。
圖7 不同偏移下的垂直方向上的力曲線
圖7表明:偏心率為正值時,在0.2s~0.3s隨著曲柄偏移量增加,C點的垂直方向上的力逐漸增加;當偏心率為負值時,隨著曲柄偏移量的增加,力開始下降,然后在-80mm處開始逐步增加。所以,當偏移量為-80mm,力在0.2s~0.3s的數(shù)值降到最低,這時切削質量是最佳的。
當曲柄在其他的速度旋轉,有相同的優(yōu)化結果。圖8顯示的是曲軸轉速為80轉/分鐘、曲軸偏移量為0mm到-80mm時,垂直方向上的力。從圖8可以看出,當偏移量為-80mm時,C點垂直方向的里在0.2s~0.3s大大減少。因此通過優(yōu)化曲柄偏移量可以減少垂直方向上的力。
圖8 C點的垂直方向上的力
5 實驗分析
蓮藕片的厚度相對誤差反映了切削質量,一般控制在10%。在結構的優(yōu)化和改進前,總是存在斜邊現(xiàn)象,厚度相對誤差約為15%左右,這是難以滿足的技術要求。對曲柄滑塊機構的偏移量進行優(yōu)化,并根據(jù)優(yōu)化的結果,它的結構有了一些改進。改進后的曲柄,在速度的條件為80?110轉/分鐘時,切削試驗出來的厚度相對誤差的統(tǒng)計數(shù)據(jù)如表?1所示。從四個速度層次進行分析實驗,每個速度層次進行三次實驗。
表 1 切片厚度相對誤差
序號
曲柄速度(轉/分鐘)
80
90
100
110
1
6.6%
6.4%
8.2%
9.5%
2
5.3%
6.1%
8.5%
9.2%
2
6.4%
7.9%
7.9%
9.4%
平均
6.1%
6.8%
8.2%
9.4%
來自表1的數(shù)據(jù)顯示,當曲柄速度為80?110轉/分鐘時,切片厚度相對誤差能滿足各項技術指標,尤其是當曲軸旋轉速度為80轉/分鐘和90轉/分鐘時,厚度相對誤差低于7%,達到了較高的切削質量。
6 總結
切削的過程中,表面不平整和斜邊的主要原因是作用在刀組件上的垂直分力,因此提高質量的關鍵是減小垂直方向上的力。通過刀片質量中心速度和加速度模擬分析曲線得到,0.2s?0.3s是切片的最佳時間。通過優(yōu)化曲柄的偏移量,當偏移量為-80mm時,垂直方向上的力在切削時間大大減小。經(jīng)過實驗改進蓮藕切片機后,實驗結果表明,通過改變曲柄偏移量,厚度相對誤差不到10%,完全能夠滿足要求。因此,平整度不理想和斜邊問題基本解決。
參考文獻
[1] 胡建平.蓮藕切片技術的學習和新的模型設計. 中國農業(yè)機械化研究(12),112~114.2006
[2] 韋恩鑄.基于虛擬樣機技術的新型蓮藕切片機仿真優(yōu)化.江蘇大學,2008
[3] 張 策.機械動力學.高等教育出版社,1999
[4] 陳秀林.機械優(yōu)化設計.浙江大學出版社,1999.
[5] 陳麗萍,鄭云群,容微群.機械系統(tǒng)的動態(tài)分析和應用指南ADAMS.北京:清華大學出版
社,2005
第 7 頁 共 7 頁
塔里木大學
畢業(yè)論文(設計)任務書
學院
機械電氣化工程學院
班級
機械設計12
學生姓名
陳斌
學號
6031208107
課題名稱
蘋果切片機的設計
起止時間
2011年 12月 1日——2012年5月 26日(共16周)
指導教師
王 偉
職稱
副教授
課題內容
設計棗樹起苗機,主要能完成蘋果夾緊、切片等功能。
1. 選擇動力形式,設計傳動裝置和工作裝置。
2. 繪制二維裝配圖和零件圖。
3. 對整機進行三維實體建模。
擬定工作進度(以周為單位)
第1-3周 查閱相關文獻,撰寫開題報告。
第4-6周 根據(jù)當?shù)貙嶋H情況確定蘋果切片機的設計方案。
第7-9周 根據(jù)工作要求,計算并查閱相關手冊,選擇和設計各零部件。
第10周 運用AutoCAD軟件,繪制二維零件圖和裝配圖。
第11-12周 運用三維設計軟件完成整機各零部件的三維建模。
第13-14周 從工藝性能,經(jīng)濟性能,實用性能等方面對產品進行綜合評價、校核、修正。
第15周 完成設計說明書。
第 16周 答辯。
主要參考文獻
[1] 黃桂琴, 瞿越, 朱鳳武. 人參切片機設計研究[J]. 吉林農業(yè)大學學報, 1996, (03)
[2] 戈振揚, 余揚. 脫水蜜菠蘿切片方法的研究[J]. 云南農業(yè)大學學報, 1990, (04)
[3] 謝中生.國外切片機發(fā)展述評.電子工業(yè)部第45研究所.1996.3
[4] 屠用利. 罐藏果蔬原料處理設備(三)[J]. 食品工業(yè), 1985, (02)
[5] 戈振揚. 菠蘿切片機[J]. 食品與機械, 1990, (04)
[6] 朱海強. QP—320型鮮姜切片機的研制[J]. 農機化, 2009, (03)
[7] 姜雪鷹,馮小氟. 計算機控制螺旋切片機的設計[J]. 機械設計與制造, 1995, (04)
[8] 李仕坦. 鮮菇切片機聞世[J]. 食用菌, 2003, (02)
[9] 手電動兩用蔬菜切絲切片機[J]. 農村新技術, 2010, (20)
[10] 毛瑞馥,陳正學. CP系列果蔬脆片加工設備簡介[J]. 食品工業(yè)科技, 1996, (04)
[11] 羅倉學, 楊秀芳, 劉萍. 凍干果蔬脆片制作工藝[J]. 應用科技, 1998, (10)
[12] 罐頭工業(yè)手冊(專業(yè)沒備與建廠設計) 1980 5第五分冊北京:中國輕工業(yè)出版社,1986
[13] 朱海強.QP—320型鮮姜切片機研制[J]. 特色農業(yè)化,2009,(3)
[14] 梁仁和.QP內圓切片機系統(tǒng)設計和實現(xiàn).碩士學位論文,20071001
[15] 張瑋琪.切片機電氣故障的檢修與維護.電子工業(yè)專用設備.2004(8):69-71
[16] 羅懷民.微型PLc在切片機中的應用.電子工業(yè)專用設備.2005(126):61-63
[17] 王明權,郭強生,黃克飛.QP-509型自動內圓切片機.電子工業(yè)專用設備1994,23(3)
任務下達人(簽字)
同意按此計劃進行設計
年 月 日
任務接受人意見
任務接受人簽名
年 月 日