高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.2 兩條直線的位置關(guān)系課件 文 北師大版.ppt
《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.2 兩條直線的位置關(guān)系課件 文 北師大版.ppt》由會(huì)員分享,可在線閱讀,更多相關(guān)《高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.2 兩條直線的位置關(guān)系課件 文 北師大版.ppt(37頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
9.2 兩條直線的位置關(guān)系,考綱要求:1.能根據(jù)兩條直線的斜率判定這兩條直線平行或垂直. 2.能用解方程組的方法求兩條相交直線的交點(diǎn)坐標(biāo). 3.掌握點(diǎn)到直線的距離公式,會(huì)求兩條平行直線間的距離.,1.兩條直線平行與垂直的判定 (1)兩條直線平行 對(duì)于兩條不重合的直線l1,l2,其斜率分別為k1,k2,則有l(wèi)1∥l2?k1=k2.特別地,當(dāng)直線l1,l2的斜率都不存在時(shí),l1與l2平行或重合. (2)兩條直線垂直 如果兩條直線l1,l2斜率都存在,設(shè)為k1,k2,則l1⊥l2?k1k2=-1,當(dāng)一條直線斜率為零,另一條直線斜率不存在時(shí),兩條直線垂直.,2.兩直線相交 直線l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共點(diǎn)的坐標(biāo)與方程組 的解一一對(duì)應(yīng).相交?方程組有唯一解,交點(diǎn)坐標(biāo)就是方程組的解;平行?方程組無(wú)解;重合?方程組有無(wú)數(shù)個(gè)解.,,,,,,,,,1,2,3,4,5,1.下列結(jié)論正確的打“√”,錯(cuò)誤的打“”. (1)如果直線l1與直線l2互相平行,那么這兩條直線的斜率相等. ( ) (2)如果直線l1與直線l2互相垂直,那么它們的斜率之積一定等于-1. ( ) (3)點(diǎn)P(x1,y1)到直線y=kx+b的距離為 . ( ) (4)直線外一點(diǎn)與直線上一點(diǎn)的距離的最小值就是點(diǎn)到直線的距離. ( ) (5)已知直線l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2為常數(shù)),若直線l1⊥l2,則A1A2+B1B2=0. ( ),,,,√,√,1,2,3,4,5,2.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=0,答案,解析,1,2,3,4,5,3.已知直線l過(guò)圓x2+(y-3)2=4的圓心,且與直線x+y+1=0垂直,則l的方程是( ) A.x+y-2=0 B.x-y+2=0 C.x+y-3=0 D.x-y+3=0,答案,解析,1,2,3,4,5,4.已知點(diǎn)A(a,1),B(4,8)到直線l:x+y+1=0的距離相等,則a的值為 .,答案,解析,1,2,3,4,5,5.若直線(3a+2)x+(1-4a)y+8=0與(5a-2)x+(a+4)y-7=0垂直,則a= .,答案,解析,1,2,3,4,5,自測(cè)點(diǎn)評(píng) 1.對(duì)于直線l1與直線l2相互平行(垂直)的條件一定要注意其適用范圍. 2.求解點(diǎn)到直線、兩平行線間的距離時(shí),注意直線方程要用一般式.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1兩條直線的平行與垂直 例1已知直線l1:ax+2y+6=0和l2:x+(a-1)y+a2-1=0. (1)試判斷l(xiāng)1與l2是否平行; (2)當(dāng)l1⊥l2時(shí),求a的值.,解:(1)(方法一)當(dāng)a=1時(shí),直線l1的方程為x+2y+6=0,直線l2的方程為x=0,l1不平行于l2; 當(dāng)a=0時(shí),直線l1的方程為y=-3,直線l2的方程為x-y-1=0,l1不平行于l2; 當(dāng)a≠1且a≠0時(shí),兩直線的方程可化為 綜上可知,a=-1時(shí),l1∥l2,否則l1與l2不平行.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,(方法二)由A1B2-A2B1=0,得a(a-1)-12=0; 由A1C2-A2C1≠0,得a(a2-1)-16≠0. 解得a=-1, 故當(dāng)a=-1時(shí),l1∥l2,否則l1與l2不平行.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,(2)(方法一)當(dāng)a=1時(shí),直線l1的方程為x+2y+6=0,直線l2的方程為x=0,l1與l2不垂直,故a=1不成立. 當(dāng)a=0時(shí),直線l1的方程為y=-3,直線l2的方程為x-y-1=0,l1不垂直于l2.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,思考:解含參數(shù)的直線方程有關(guān)問(wèn)題時(shí)如何分類(lèi)討論? 解題心得:1.當(dāng)含參數(shù)的直線方程為一般式時(shí),若要表示出直線的斜率,不僅要考慮到斜率存在的一般情況,也要考慮到斜率不存在的特殊情況,同時(shí)還要注意x,y的系數(shù)不能同時(shí)為零這一隱含條件. 2.在判斷兩直線的平行、垂直時(shí),也可直接利用直線方程的系數(shù)間的關(guān)系得出結(jié)論.,,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,對(duì)點(diǎn)訓(xùn)練1 (1)直線l1:2x+(m+1)y+4=0與直線l2:mx+3y-2=0平行,則m的值為( ) A.2 B.-3 C.2或-3 D.-2或-3,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,(2)已知直線l1:x+(a-2)y-2=0,l2:(a-2)x+ay-1=0,則“a=-1”是“l(fā)1⊥l2”的( ) A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)2直線的交點(diǎn)問(wèn)題 例2求經(jīng)過(guò)兩直線l1:x-2y+4=0和l2:x+y-2=0的交點(diǎn)P,且與直線l3:3x-4y+5=0垂直的直線l的方程.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,思考:求兩直線的交點(diǎn)坐標(biāo)的一般規(guī)律是什么? 解題心得:1.求兩直線的交點(diǎn)坐標(biāo),就是解由兩直線方程組成的方程組,以方程組的解為坐標(biāo)的點(diǎn)即為交點(diǎn). 2.常見(jiàn)的三大直線系方程: (1)與直線Ax+By+C=0平行的直線系方程是Ax+By+m=0(m∈R且m≠C). (2)與直線Ax+By+C=0垂直的直線系方程是Bx-Ay+m=0(m∈R). (3)過(guò)直線l1:A1x+B1y+C1=0與l2:A2x+B2y+C2=0的交點(diǎn)的直線系方程為A1x+B1y+C1+λ(A2x+B2y+C2)=0(λ∈R),但不包括l2.,,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,對(duì)點(diǎn)訓(xùn)練2 (1)若三條直線2x+3y+8=0,x-y-1=0和x+by=0相交于一點(diǎn),則b=( ),答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,(2)過(guò)兩直線2x-y-5=0和x+y+2=0的交點(diǎn)且與直線3x+y-1=0平行的直線方程為 .,答案,解析,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)3距離公式的應(yīng)用 例3直線l經(jīng)過(guò)點(diǎn)P(2,-5)且與點(diǎn)A(3,-2)和點(diǎn)B(-1,6)的距離之比為1∶2,求直線l的方程.,答案,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,思考:利用距離公式應(yīng)注意哪些? 解題心得:利用距離公式應(yīng)注意:(1)點(diǎn)P(x0,y0)到直線x=a的距離d=|x0-a|,到直線y=b的距離d=|y0-b|;(2)兩平行線間的距離公式要把兩直線方程中x,y的系數(shù)化為相等.,,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,對(duì)點(diǎn)訓(xùn)練3 已知點(diǎn)P(2,-1). (1)求過(guò)點(diǎn)P且與原點(diǎn)的距離為2的直線l的方程. (2)求過(guò)點(diǎn)P且與原點(diǎn)的距離最大的直線l的方程,最大距離是多少? (3)是否存在過(guò)點(diǎn)P且與原點(diǎn)的距離為6的直線?若存在,求出方程;若不存在,請(qǐng)說(shuō)明理由.,解:(1)過(guò)點(diǎn)P的直線l與原點(diǎn)的距離為2,而點(diǎn)P的坐標(biāo)為(2,-1),顯然,過(guò)P(2,-1)且垂直于x軸的直線滿(mǎn)足條件,此時(shí)l的斜率不存在,其方程為x=2. 若斜率存在,設(shè)l的方程為y+1=k(x-2),即kx-y-2k-1=0. 此時(shí)l的方程為3x-4y-10=0. 綜上,可得直線l的方程為x=2或3x-4y-10=0.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)4對(duì)稱(chēng)問(wèn)題 例4已知直線l:2x-3y+1=0,點(diǎn)A(-1,-2).求: (1)點(diǎn)A關(guān)于直線l的對(duì)稱(chēng)點(diǎn)A的坐標(biāo); (2)直線m:3x-2y-6=0關(guān)于直線l的對(duì)稱(chēng)直線m的方程; (3)直線l關(guān)于點(diǎn)A(-1,-2)對(duì)稱(chēng)的直線l的方程.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,(3)(方法一)在l:2x-3y+1=0上任取兩點(diǎn),如M(1,1),N(4,3). 則M,N關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)M,N均在直線l上. 易知M(-3,-5),N(-6,-7),由兩點(diǎn)式可得l的方程為2x-3y-9=0. (方法二)設(shè)P(x,y)為l上任意一點(diǎn), 則P(x,y)關(guān)于點(diǎn)A(-1,-2)的對(duì)稱(chēng)點(diǎn)為P(-2-x,-4-y), ∵P在直線l上,∴2(-2-x)-3(-4-y)+1=0, 即2x-3y-9=0.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,思考:有關(guān)點(diǎn)、線對(duì)稱(chēng)問(wèn)題都有哪些類(lèi)型?解法如何? 解題心得:1.點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng):求點(diǎn)P關(guān)于點(diǎn)M(a,b)的對(duì)稱(chēng)點(diǎn)Q的問(wèn)題,主要依據(jù)M是線段PQ的中點(diǎn),即xP+xQ=2a,yP+yQ=2b. 2.直線關(guān)于點(diǎn)的對(duì)稱(chēng):求直線l關(guān)于點(diǎn)M(m,n)的對(duì)稱(chēng)直線l的問(wèn)題,可從直線l上任取兩點(diǎn),求出這兩點(diǎn)關(guān)于M的對(duì)稱(chēng)點(diǎn),利用對(duì)稱(chēng)點(diǎn)在l上,可得l的方程,或依據(jù)l上的任一點(diǎn)T(x,y)關(guān)于M(m,n)的對(duì)稱(chēng)點(diǎn)T(2m-x,2n-y)在l上. 3.點(diǎn)關(guān)于直線的對(duì)稱(chēng):求已知點(diǎn)A(m,n)關(guān)于已知直線l:y=kx+b的對(duì)稱(chēng)點(diǎn)A(x0,y0)的坐標(biāo),一般方法是依據(jù)l是線段AA的垂直平分線,列出關(guān)于x0,y0的方程組,由“垂直”得一方程,由“平分”得一方程. 4.直線關(guān)于直線的對(duì)稱(chēng):此類(lèi)問(wèn)題一般轉(zhuǎn)化為點(diǎn)關(guān)于直線的對(duì)稱(chēng)來(lái)解決,有兩種情況:一是已知直線與對(duì)稱(chēng)軸相交;二是已知直線與對(duì)稱(chēng)軸平行.,,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,對(duì)點(diǎn)訓(xùn)練4 光線沿直線l1:x-2y+5=0射入,遇直線l:3x-2y+7=0后反射,求反射光線所在的直線方程.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,根據(jù)直線的兩點(diǎn)式方程可得所求反射光線所在直線的方程為29x-2y+33=0.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,1.對(duì)于兩條直線的位置關(guān)系的判斷或求解: (1)若直線斜率均存在且不重合,則一定有:l1∥l2?k1=k2. (2)若直線斜率均存在,則一定有:l1⊥l2?k1k2=-1. 2.中心對(duì)稱(chēng)問(wèn)題 (1)點(diǎn)關(guān)于點(diǎn)的對(duì)稱(chēng)一般用中點(diǎn)坐標(biāo)公式解決. (2)直線關(guān)于點(diǎn)的對(duì)稱(chēng),可以在已知直線上任取兩點(diǎn),利用中點(diǎn)坐標(biāo)公式求出它們關(guān)于已知點(diǎn)對(duì)稱(chēng)的兩點(diǎn)的坐標(biāo),再根據(jù)這兩點(diǎn)確定直線的方程;也可以利用所求直線上任一點(diǎn)的對(duì)稱(chēng)點(diǎn)在已知直線上求解.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,3.軸對(duì)稱(chēng)問(wèn)題 (1)點(diǎn)關(guān)于直線的對(duì)稱(chēng) 若兩點(diǎn)P1(x1,y1)與P2(x2,y2)關(guān)于直線l:Ax+By+C=0對(duì)稱(chēng),一般由方 程組 可得到點(diǎn)P1關(guān)于直線l的對(duì) 稱(chēng)點(diǎn)P2的坐標(biāo)(x2,y2)(其中B≠0,x1≠x2). (2)直線關(guān)于直線的對(duì)稱(chēng),若兩直線平行,可用距離公式解決;若兩直線不平行,就轉(zhuǎn)化為點(diǎn)關(guān)于直線的對(duì)稱(chēng)問(wèn)題.,考點(diǎn)1,考點(diǎn)2,考點(diǎn)3,考點(diǎn)4,知識(shí)方法,易錯(cuò)易混,1.運(yùn)用兩平行直線間的距離公式時(shí),一定要統(tǒng)一兩方程中x,y前的系數(shù),還要清楚該公式其實(shí)是通過(guò)點(diǎn)到直線的距離公式推導(dǎo)而來(lái)的. 2.討論直線的位置關(guān)系涉及含參類(lèi)直線方程時(shí),一定不要遺漏斜率不存在、斜率為0等特殊情形. 3.“l(fā)1⊥l2?A1A2+B1B2=0”適用于任意兩條互相垂直的直線.,思想方法——轉(zhuǎn)化思想在對(duì)稱(chēng)問(wèn)題中的應(yīng)用 1.若在直線l上找一點(diǎn)P,使點(diǎn)P到兩定點(diǎn)A,B的距離之和最小,要看A,B兩點(diǎn)相對(duì)直線l的位置.若A,B在直線l的異側(cè),則直接連接AB,AB與直線l的交點(diǎn)即為所求;若A,B在直線l的同側(cè),則需要找出A或B中一個(gè)點(diǎn)關(guān)于直線l的對(duì)稱(chēng)點(diǎn),然后連接另一點(diǎn)與對(duì)稱(chēng)點(diǎn),連線與直線l的交點(diǎn)即為所求. 2.若在直線l上找一點(diǎn)使到兩定點(diǎn)A,B的距離之差最大時(shí),則與上面和最小問(wèn)題正好相反.若A,B在直線l的異側(cè),則需要利用對(duì)稱(chēng)轉(zhuǎn)化;若A,B在直線同側(cè),則A,B兩點(diǎn)所在直線與l的交點(diǎn)即是所求. 典例已知直線l:x-2y+8=0和兩點(diǎn)A(2,0),B(-2,-4). (1)在直線l上求一點(diǎn)P,使|PA|+|PB|最小; (2)在直線l上求一點(diǎn)P,使||PB|-|PA||最大.,(2)A,B兩點(diǎn)在直線l的同側(cè),P是直線l上的一點(diǎn), 則||PB|-|PA||≤|AB|,當(dāng)且僅當(dāng)A,B,P三點(diǎn)共線時(shí),||PB|-|PA||取得最大值,為|AB|,點(diǎn)P即是直線AB與直線l的交點(diǎn),又直線AB的方程為y=x-2, 故所求的點(diǎn)P的坐標(biāo)為(12,10).,- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 高考數(shù)學(xué)一輪復(fù)習(xí) 第九章 解析幾何 9.2 兩條直線的位置關(guān)系課件 北師大版 高考 數(shù)學(xué) 一輪 復(fù)習(xí) 第九 直線 位置 關(guān)系 課件 北師大
鏈接地址:http://www.3dchina-expo.com/p-2328087.html