2019-2020年高三物理第一輪復習 磁場教案16 新人教版.doc
《2019-2020年高三物理第一輪復習 磁場教案16 新人教版.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三物理第一輪復習 磁場教案16 新人教版.doc(32頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三物理第一輪復習 磁場教案16 新人教版 知識網(wǎng)絡: 本章在介紹了磁現(xiàn)象的電本質(zhì)的基礎上,主要討論了磁場的描述方法(定義了磁感應強度、磁通量等概念,引入了磁感線這個工具)和磁場產(chǎn)生的作用(對電流的安培力作用,對通電線圈 的磁力矩作用和對運動電荷的洛侖茲力作用)及相關問題。其中磁感應強度、磁通量是電磁學 的基本概念,應認真理解;載流導體在磁場中的平衡、加速運動,帶電粒子在洛侖茲力作用 下的圓周運動等內(nèi)容應熟練掌握;常見磁體周圍磁感線的空間分布觀念的建立,常是解決有 關問題的關鍵,應注意這方面的訓練。 單元切塊: 按照考綱的要求,本章內(nèi)容可以分成三部分,即:基本概念 安培力;洛倫茲力 帶電粒子在磁場中的運動;帶電粒子在復合場中的運動。其中重點是對安培力、洛倫茲力的理解、熟練解決通電直導線在復合場中的平衡和運動問題、帶電粒子在復合場中的運動問題。難點是帶電粒子在復合場中的運動問題。 知識點、能力點提示 1.通過有關磁場知識的歸納,使學生對磁場有較全面的認識,并在此基礎上理解磁現(xiàn)象電本質(zhì); 2.介紹磁性材料及其運用,擴大學生的知識面,培養(yǎng)聯(lián)系實際的能力; 3.磁感應強度B的引入,體會科學探究方法;通過安培力的知識,理解電流表的工作原理;通過安培力的公式F=IlBsinθ的分析推理,開闊學生思路,培養(yǎng)學生思維能力;通過安培力 在電流表中的應用,培養(yǎng)學生運用所學知識解決實際問題的意識和能力; 4.通過洛侖茲力的引入,培養(yǎng)學生的邏輯推理能力; 5.通過帶電粒子在磁場中運動及回旋加速器的介紹,調(diào)動學生思考的積極性及思維習慣的培養(yǎng),并開闊思路。 基本概念 安培力 教學目標: 1.掌握電流的磁場、安培定則;了解磁性材料,分子電流假說 2.掌握磁感應強度,磁感線,知道地磁場的特點 3.掌握磁場對通電直導線的作用,安培力,左手定則 4.了解磁電式電表的工作原理 5.能夠分析計算通電直導線在復合場中的平衡和運動問題。 教學重點:磁場對通電直導線的作用,安培力 教學難點:通電直導線在復合場中的平衡和運動問題 教學方法:講練結(jié)合,計算機輔助教學 教學過程: 一、基本概念 1.磁場的產(chǎn)生 ⑴磁極周圍有磁場。 ⑵電流周圍有磁場(奧斯特)。 安培提出分子電流假說(又叫磁性起源假說),認為磁極的磁場和電流的磁場都是由電荷的運動產(chǎn)生的。(但這并不等于說所有磁場都是由運動電荷產(chǎn)生的,因為麥克斯韋發(fā)現(xiàn)變化的電場也能產(chǎn)生磁場。) ⑶變化的電場在周圍空間產(chǎn)生磁場。 2.磁場的基本性質(zhì) 磁場對放入其中的磁極和電流有磁場力的作用(對磁極一定有力的作用;對電流只是可能有力的作用,當電流和磁感線平行時不受磁場力作用)。這一點應該跟電場的基本性質(zhì)相比較。 3.磁場力的方向的判定 磁極和電流之間的相互作用力(包括磁極與磁極、電流與電流、磁極與電流),都是運動電荷之間通過磁場發(fā)生的相互作用。因此在分析磁極和電流間的各種相互作用力的方向時,不要再沿用初中學過的“同名磁極互相排斥,異名磁極互相吸引”的結(jié)論(該結(jié)論只有在一個磁體在另一個磁體外部時才正確),而應該用更加普遍適用的:“同向電流互相吸引,反向電流互相排斥”,或用左手定則判定。 4.磁感線 ⑴用來形象地描述磁場中各點的磁場方向和強弱的曲線。磁感線上每一點的切線方向就是該點的磁場方向,也就是在該點小磁針靜止時N極的指向。磁感線的疏密表示磁場的強弱。 ⑵磁感線是封閉曲線(和靜電場的電場線不同)。 ⑶要熟記常見的幾種磁場的磁感線: 地球磁場 通電直導線周圍磁場 通電環(huán)行導線周圍磁場 ⑷安培定則(右手螺旋定則):對直導線,四指指磁感線方向;對環(huán)行電流,大拇指指中心軸線上的磁感線方向;對長直螺線管大拇指指螺線管內(nèi)部的磁感線方向。 5.磁感應強度 (條件是勻強磁場中,或ΔL很小,并且L⊥B )。 磁感應強度是矢量。單位是特斯拉,符號為T,1T=1N/(A?m)=1kg/(A?s2) 6.磁通量 如果在磁感應強度為B的勻強磁場中有一個與磁場方向垂直的平面,其面積為S,則定義B與S的乘積為穿過這個面的磁通量,用Φ表示。Φ是標量,但是有方向(進該面或出該面)。單位為韋伯,符號為Wb。1Wb=1T?m2=1V?s=1kg?m2/(A?s2)。 可以認為穿過某個面的磁感線條數(shù)就是磁通量。 在勻強磁場磁感線垂直于平面的情況下,B=Φ/S,所以磁感應強度又叫磁通密度。在勻強磁場中,當B與S的夾角為α時,有Φ=BSsinα。 二、安培力 (磁場對電流的作用力) 1.安培力方向的判定 (1)用左手定則。 (2)用“同性相斥,異性相吸”(只適用于磁鐵之間或磁體位于螺線管外部時)。 (3)用“同向電流相吸,反向電流相斥”(反映了磁現(xiàn)象的電本質(zhì))??梢园褩l形磁鐵等效為長直螺線管(不要把長直螺線管等效為條形磁鐵)。 【例1】磁場對電流的作用力大小為F=BIL(注意:L為有效長度,電流與磁場方向應 ?。瓼的方向可用 定則來判定. 試判斷下列通電導線的受力方向. B I ?。。。。? B .?。。。? ?。。。。? ?。。。。? 試分別判斷下列導線的電流方向或磁場方向或受力方向. B F B F 【例2】S N I 如圖所示,可以自由移動的豎直導線中通有向下的電流,不計通電導線的重力,僅在磁場力作用下,導線將如何移動? N S F F F / F 解:先畫出導線所在處的磁感線,上下兩部分導線所受安培力的方向相反,使導線從左向右看順時針轉(zhuǎn)動;同時又受到豎直向上的磁場的作用而向右移動(不要說成先轉(zhuǎn)90后平移)。分析的關鍵是畫出相關的磁感線。 【例3】 條形磁鐵放在粗糙水平面上,正中的正上方有一導線,通有圖示方向的電流后,磁鐵對水平面的壓力將會___(增大、減小還是不變?)。水平面對磁鐵的摩擦力大小為___。 解:本題有多種分析方法。⑴畫出通電導線中電流的磁場中通過兩極的那條磁感線(如圖中粗虛線所示),可看出兩極受的磁場力的合力豎直向上。磁鐵對水平面的壓力減小,但不受摩擦力。⑵畫出條形磁鐵的磁感線中通過通電導線的那一條(如圖中細虛線所示),可看出導線受到的安培力豎直向下,因此條形磁鐵受的反作用力豎直向上。⑶把條形磁鐵等效為通電螺線管,上方的電流是向里的,與通電導線中的電流是同向電流,所以互相吸引。 S N 【例4】 如圖在條形磁鐵N極附近懸掛一個線圈,當線圈中通有逆時針方向的電流時,線圈將向哪個方向偏轉(zhuǎn)? 解:用“同向電流互相吸引,反向電流互相排斥”最簡單:條形磁鐵的等效螺線管的電流在正面是向下的,與線圈中的電流方向相反,互相排斥,而左邊的線圈匝數(shù)多所以線圈向右偏轉(zhuǎn)。(本題如果用“同名磁極相斥,異名磁極相吸”將出現(xiàn)判斷錯誤,因為那只適用于線圈位于磁鐵外部的情況。) i 【例5】 電視機顯象管的偏轉(zhuǎn)線圈示意圖如右,即時電流方向如圖所示。該時刻由里向外射出的電子流將向哪個方向偏轉(zhuǎn)? 解:畫出偏轉(zhuǎn)線圈內(nèi)側(cè)的電流,是左半線圈靠電子流的一側(cè)為向里,右半線圈靠電子流的一側(cè)為向外。電子流的等效電流方向是向里的,根據(jù)“同向電流互相吸引,反向電流互相排斥”,可判定電子流向左偏轉(zhuǎn)。(本題用其它方法判斷也行,但不如這個方法簡潔)。 2.安培力大小的計算 F=BLIsinα(α為B、L間的夾角)高中只要求會計算α=0(不受安培力)和α=90兩種情況。 α α 【例6】 如圖所示,光滑導軌與水平面成α角,導軌寬L。勻強磁場磁感應強度為B。金屬桿長也為L ,質(zhì)量為m,水平放在導軌上。當回路總電流為I1時,金屬桿正好能靜止。求:⑴B至少多大?這時B的方向如何?⑵若保持B的大小不變而將B的方向改為豎直向上,應把回路總電流I2調(diào)到多大才能使金屬桿保持靜止? α B 解:畫出金屬桿的截面圖。由三角形定則得,只有當安培力方向沿導軌平面向上時安培力才最小,B也最小。根據(jù)左手定則,這時B應垂直于導軌平面向上,大小滿足:BI1L=mgsinα, B=mgsinα/I1L。 當B的方向改為豎直向上時,這時安培力的方向變?yōu)樗较蛴?,沿導軌方向合力為零,得BI2Lcosα=mgsinα,I2=I1/cosα。(在解這類題時必須畫出截面圖,只有在截面圖上才能正確表示各力的準確方向,從而弄清各矢量方向間的關系)。 B h s 【例7】如圖所示,質(zhì)量為m的銅棒搭在U形導線框右端,棒長和框?qū)捑鶠長,磁感應強度為B的勻強磁場方向豎直向下。電鍵閉合后,在磁場力作用下銅棒被平拋出去,下落h后的水平位移為s。求閉合電鍵后通過銅棒的電荷量Q。 解:閉合電鍵后的極短時間內(nèi),銅棒受安培力向右的沖量FΔt=mv0而被平拋出去,其中F=BIL,而瞬時電流和時間的乘積等于電荷量Q=I?Δt,由平拋規(guī)律可算銅棒離開導線框時的初速度,最終可得。 θ O M N a b R 【例8】如圖所示,半徑為R、單位長度電阻為的均勻?qū)w環(huán)固定在水平面上,圓環(huán)中心為O,勻強磁場垂直于水平面方向向下,磁感應強度為B。平行于直徑MON的導體桿,沿垂直于桿的方向向右運動。桿的電阻可以忽略不計,桿于圓環(huán)接觸良好。某時刻,桿的位置如圖,∠aOb=2θ,速度為v,求此時刻作用在桿上的安培力的大小。 解:ab段切割磁感線產(chǎn)生的感應電動勢為E=vB?2Rsinθ,以a、b為端點的兩個弧上的電阻分別為2R(π-θ)和2Rθ,回路的總電阻為,總電流為I=E/r,安培力F=IB?2Rsinθ,由以上各式解得:。 【例9】如圖所示,兩根平行金屬導軌間的距離為0.4 m,導軌平面與水平面的夾角為37,磁感應強度為0.5 T的勻強磁場垂直于導軌平面斜向上,兩根電阻均為1Ω、重均為0.1 N的金屬桿ab、cd水平地放在導軌上,桿與導軌間的動摩擦因數(shù)為0.3,導軌的電阻可以忽略.為使ab桿能靜止在導軌上,必須使cd桿以多大的速率沿斜面向上運動? 解:設必須使cd桿以v沿斜面向上運動,則有cd桿切割磁場線,將產(chǎn)生感應電動勢E=Blv 在兩桿和軌道的閉合回路中產(chǎn)生電流I= ab桿受到沿斜面向上的安培力F安=Bil ab桿靜止時,受力分析如圖 根據(jù)平衡條件,應有 Gsinθ一μGcosθ≤F安≤Gsinθ+μGcosθ 聯(lián)立以上各式,將數(shù)值代人,可解得 1.8 m/s≤v≤4.2 m/s 【例10】如圖所示是一個可以用來測量磁感應強度的裝置:一長方體絕緣容器內(nèi)部高為L,厚為d,左右兩管等高處裝有兩根完全相同的開口向上的管子a、b,上、下兩側(cè)裝有電極C(正極)和D(負極)并經(jīng)開關S與電源連接,容器中注滿能導電的液體,液體的密度為ρ;將容器置于一勻強磁場中,磁場方向垂直紙面向里,當開關斷開時,豎直管子a、b中的液面高度相同,開關S閉合后,a、b管中液面將出現(xiàn)高度差。若當開關S閉合后,a、b管中液面將出現(xiàn)高度差為h,電路中電流表的讀數(shù)為I,求磁感應強度B的大小。 A a b A C D S 解析:開關S閉合后,導電液體中有電流由C流到D, 根據(jù)左手定則可知導電液體要受到向右的安培力F作用, 在液體中產(chǎn)生附加壓強P,這樣a、b管中液面將出現(xiàn)高 度差。在液體中產(chǎn)生附加壓強P為 所以磁感應強度B的大小為: 【例10】安培秤如圖所示,它的一臂下面掛有一個矩形線圈,線圈共有N匝,它的下部懸在均勻磁場B內(nèi),下邊一段長為L,它與B垂直。當線圈的導線中通有電流I時,調(diào)節(jié)砝碼使兩臂達到平衡;然后使電流反向,這時需要在一臂上加質(zhì)量為m的砝碼,才能使兩臂再達到平衡。求磁感應強度B的大小。 解析:根據(jù)天平的原理很容易得出安培力F=, 所以F=NBLI= 因此磁感應強度B=。 三、與地磁場有關的電磁現(xiàn)象綜合問題 1.地磁場中安培力的討論 【例11】已知北京地區(qū)地磁場的水平分量為3.010-5T.若北京市一高層建筑安裝了高100m的金屬桿作為避雷針,在某次雷雨天氣中,某一時刻的放電電流為105A,此時金屬桿所受培力的方向和大小如何?磁力矩又是多大? 分析:首先要搞清放電電流的方向.因為地球帶有負電荷,雷雨放電時,是地球所帶電荷通過金屬桿向上運動,即電流方向向下. 對于這類問題,都可采用如下方法確定空間的方向:面向北方而立,則空間水平磁場均為“”;自己右手邊為東方,左手邊為西方,背后為南方,如圖2所示.由左手定則判定電流所受磁場力向右(即指向東方),大小為 F=BIl=3.010-5105100=300(N). 因為磁力與通電導線的長度成正比,可認為合力的作用點為金屬桿的中點,所以磁力矩 M=F l=300100 ?。?.5104(Nm). 用同一方法可判斷如下問題:一條長2m的導線水平放在赤道上空,通以自西向東的電流,它所受地磁場的磁場力方向如何? 2.地磁場中的電磁感應現(xiàn)象 【例12】繩系衛(wèi)星是系留在航天器上繞地球飛行的一種新型衛(wèi)星,可以用來對地球的大氣層進行直接探測;系繩是由導體材料做成的,又可以進行地球空間磁場電離層的探測;系繩在運動中又可為衛(wèi)星和牽引它的航天器提供電力. 1992年和1996年,在美國“亞特蘭大”號航天飛機在飛行中做了一項懸繩發(fā)電實驗:航天飛機在赤道上空飛行,速度為7.5km/s,方向自西向東.地磁場在該處的磁感應強度B=0.510-4T.從航天飛機上發(fā)射了一顆衛(wèi)星,衛(wèi)星攜帶一根長l=20km的金屬懸繩與航天飛機相連.從航天飛機到衛(wèi)生間的懸繩指向地心.那么,這根懸繩能產(chǎn)生多大的感應電動勢呢? 分析:采用前面所設想的確定空間方位的方法,用右手定則不難發(fā)現(xiàn),豎起右手,大拇指向右邊(即東方),四指向上(即地面的上方),所以航天飛機的電勢比衛(wèi)星高,大小為 E=BLv=0.510-521047.5103=7.5103(V). 用同樣的方法可以判斷,沿長江順流而下的輪般桅桿所產(chǎn)生的電勢差及在北半球高空水平向各方向飛行的飛機機翼兩端的電勢差(注意:此時機翼切割地磁場的有效分量是豎直分量). 3.如何測地磁場磁感應強度的大小和方向 地磁場的磁感線在北半球朝向偏北并傾斜指向地面,在南半球朝向偏北并傾斜指向天空,且磁傾角的大小隨緯度的變化而變化.若測出地磁場磁感應強度的水平分量和豎直分量,即可測出磁感應強度的大小和方向. 【例13】測量地磁場磁感應強度的方法很多,現(xiàn)介紹一種有趣的方法. 如圖所示為北半球一條自西向東的河流,河兩岸沿南北方向的A、B兩點相距為d.若測出河水流速為v,A、B兩點的電勢差為U,即能測出此地的磁感應強度的垂直分量B⊥. 因為河水中總有一定量的正、負離子,在地磁場洛侖茲力的作用下,正離子向A點偏轉(zhuǎn),正、負離子向B點偏轉(zhuǎn),當A、B間電勢差達到一定值時,負離子所受電場力與洛侖茲力平衡,離子不同偏轉(zhuǎn),即 =B⊥qv,故B⊥=. 如圖所示,在測過B⊥的地方將電阻為R、面積為S的矩形線圈的AD邊東西方向放置,線圈從水平轉(zhuǎn)到豎直的過程中,測出通過線圈某一截面的電量Q,穿過線圈的磁通量先是B⊥從正面穿過,繼而變?yōu)锽//從反面穿過,那么電量 Q= ∴B//= ∴B=,磁傾角θ=argtg 四、針對訓練: 1. 下列說法中正確的是 A.磁感線可以表示磁場的方向和強弱 B.磁感線從磁體的N極出發(fā),終止于磁體的S極 C.磁鐵能產(chǎn)生磁場,電流也能產(chǎn)生磁場 D.放入通電螺線管內(nèi)的小磁針,根據(jù)異名磁極相吸的原則,小磁針的N極一定指向通電螺線管的S極 2.關于磁感應強度,下列說法中錯誤的是 A.由B=可知,B與F成正比,與IL成反比 B.由B=可知,一小段通電導體在某處不受磁場力,說明此處一定無磁場 C.通電導線在磁場中受力越大,說明磁場越強 D.磁感應強度的方向就是該處電流受力方向 3.一束電子流沿x軸正方向高速運動,如圖所示,則電子流產(chǎn)生的磁場在z軸上的點P處的方向是 A.沿y軸正方向 B.沿y軸負方向 C.沿z軸正方向 D.沿z軸負方向 4.在地球赤道上空有一小磁針處于水平靜止狀態(tài),突然發(fā)現(xiàn)小磁針N極向東偏轉(zhuǎn),由此可知 A.一定是小磁針正東方向上有一條形磁鐵的N極靠近小磁針 B.一定是小磁針正東方向上有一條形磁鐵的S極靠近小磁針 C.可能是小磁針正上方有電子流自南向北水平通過 D.可能是小磁針正上方有電子流自北向南水平通過 5.兩根長直通電導線互相平行,電流方向相同.它們的截面處于一個等邊三角形ABC的A和B處.如圖所示,兩通電導線在C處的磁場的磁感應強度的值都是B,則C處磁場的總磁感應強度是 A.2B B.B C.0 D.B 6.磁鐵在高溫下或者受到敲擊時會失去磁性,根據(jù)安培的分子電流假說,其原因是 A.分子電流消失 B.分子電流的取向變得大致相同 C.分子電流的取向變得雜亂 D.分子電流的強度減弱 7.根據(jù)安培假說的思想,認為磁場是由于電荷運動產(chǎn)生的,這種思想對于地磁場也適用,而目前在地球上并沒有發(fā)現(xiàn)相對于地球定向移動的電荷,那么由此判斷,地球應該() A.帶負電 B.帶正電 C.不帶電 D.無法確定 8. 關于垂直于磁場方向的通電直導線所受磁場作用力的方向,正確的說法是 A.跟電流方向垂直,跟磁場方向平行 B.跟磁場方向垂直,跟電流方向平行 C.既跟磁場方向垂直,又跟電流方向垂直 D.既不跟磁場方向垂直,又不跟電流方向垂直 9.如圖所示,直導線處于足夠大的勻強磁場中,與磁感線成θ=30角,導線中通過的電流為I,為了增大導線所受的磁場力,可采取下列四種辦法,其中不正確的是 A.增大電流I B.增加直導線的長度 C.使導線在紙面內(nèi)順時針轉(zhuǎn)30 D.使導線在紙面內(nèi)逆時針轉(zhuǎn)60 10.如圖所示,線圈abcd邊長分別為L1、L2,通過的電流為I,當線圈繞OO′軸轉(zhuǎn)過θ角時 A.通過線圈的磁通量是BL1L2cosθ B.ab邊受安培力大小為BIL1cosθ C.ad邊受的安培力大小為BIL2cosθ D.線圈受的磁力矩為BIL1L2cosθ 11.如圖所示,一金屬直桿MN兩端接有導線,懸掛于線圈上方,MN與線圈軸線均處于豎直平面內(nèi),為使M N垂直紙面向外運動,可以 A.將a、c端接在電源正極,b、d端接在電源負極 B.將b、d端接在電源正極,a、c端接在電源負極 C.將a、d端接在電源正極,b、c端接在電源負極 D.將a、c端接在交流電源的一端,b、d接在交流電源的另一端 12.(xx年上海高考試題)如圖所示,兩根平行放置的長直導線a和b載有大小相同、方向相反的電流,a受到的磁場力大小為F1,當加入一與導線所在平面垂直的勻強磁場后,a受到的磁場力大小變?yōu)镕2,則此時b受到的磁場力大小變?yōu)? A.F2 B.F1-F2 C.F1+F2 D.2F1-F2 13.如圖所示,條形磁鐵放在水平桌面上,在其正中央的上方固定一根長直導線,導線與磁鐵垂直,給導線通以垂直紙面向外的電流,則 A.磁鐵對桌面壓力減小,不受桌面的摩擦力作用 B.磁鐵對桌面的壓力減小,受到桌面的摩擦力作用 C.磁鐵對桌面的壓力增大,不受桌面的摩擦力作用 D.磁鐵對桌面的壓力增大,受到桌面的摩擦力作用 14.長為L,重為G的均勻金屬棒一端用細線懸掛,一端擱在桌面上與桌面夾角為α,現(xiàn)垂直細線和棒所在平面加一個磁感應強度為B的勻強磁場,當棒通入如圖所示方向的電流時,細線中正好無拉力.則電流的大小為_______ A. 15.電磁炮是一種理想的兵器,它的主要原理如圖所示,1982年澳大利亞國立大學制成了能把2.2 g的彈體(包括金屬桿EF的質(zhì)量)加速到10 km/s的電磁炮(常規(guī)炮彈速度大小約為2 km/s),若軌道寬2 m,長為100 m,通過的電流為10 A,則軌道間所加勻強磁場的磁感應強度為_______ T,磁場力的最大功率P=_______ W(軌道摩擦不計). 16.如圖所示,在兩根勁度系數(shù)都為k的相同的輕質(zhì)彈簧下懸掛有一根導體棒ab,導體棒置于水平方向的勻強磁場中,且與磁場垂直.磁場方向垂直紙面向里,當導體棒中通以自左向右的恒定電流時,兩彈簧各伸長了Δl1;若只將電流反向而保持其他條件不變,則兩彈簧各伸長了Δl2,求:(1)導體棒通電后受到的磁場力的大小?(2)若導體棒中無電流,則每根彈簧的伸長量為多少? 17.如圖所示,在傾角為30的光滑斜面上垂直紙面放置一根長為L,質(zhì)量為m的通電直導體棒,棒內(nèi)電流大小為I,方向垂直紙面向外.以水平向右為x軸正方向,豎直向上為y軸正方向建立直角坐標系. (1)若加一方向垂直斜面向上的勻強磁場,使導體棒在斜面上保持靜止,求磁場的磁感應強度多大? (2)若加一方向垂直水平面向上的勻強磁場使導體棒在斜面上靜止,該磁場的磁感應強度多大. 18.在原子反應堆中抽動液態(tài)金屬時,由于不允許轉(zhuǎn)動機械部分和液態(tài)金屬接觸,常使用一種電磁泵.如圖1—34—13所示是這種電磁泵的結(jié)構示意圖,圖中A是導管的一段,垂直于勻強磁場放置,導管內(nèi)充滿液態(tài)金屬.當電流I垂直于導管和磁場方向穿過液態(tài)金屬時,液態(tài)金屬即被驅(qū)動,并保持勻速運動.若導管內(nèi)截面寬為a,高為b,磁場區(qū)域中的液體通過的電流為I,磁感應強度為B.求: (1)電流I的方向; (2)驅(qū)動力對液體造成的壓強差. 參考答案 1.AC 2.ABCD 3.A 4.C 5.D 6.C 7. A 8.C 9.C 10.D 11.ABD 可先由安培定則判定磁場方向,再由左手定則判定通電導線的受力方向. 12.A 13.A 變換研究對象,根據(jù)磁感線分布及左手定則,先分析通電長直導線受力情況,再由牛頓第三定律分析磁鐵和桌面之間的作用 14.Gcosα/BL 15. 55,1.1107 16.(1)k(Δl2-Δl1) (2) (Δl1+Δl2) 17.(1) (2) 18.(1)電流方向由下而上 (2)把液體看成由許多橫切液片組成,因通電而受到安培力作用,液體勻速流動時驅(qū)動力跟液體兩端的壓力差相等,即F=ΔpS,Δp=F/S=IbB/ab=IB/a. 教學后記 磁場基本概念學生掌握不錯,上課效果好,幾種典型的磁場線的分布學生也很熟悉,不過磁場的應用,常見模型如磁流體發(fā)電學生分析有一點難度,特別是基礎比較差的學生。所以,應該做好課后跟蹤調(diào)查,及時幫助學生。 洛倫茲力 帶電粒子在磁場中的運動 教學目標: 1.掌握洛侖茲力的概念; 2.熟練解決帶電粒子在勻強磁場中的勻速圓周運動問題 教學重點:帶電粒子在勻強磁場中的勻速圓周運動 教學難點:帶電粒子在勻強磁場中的勻速圓周運動 教學方法:講練結(jié)合,計算機輔助教學 教學過程: 一、洛倫茲力 1.洛倫茲力 I B F安 F 運動電荷在磁場中受到的磁場力叫洛倫茲力,它是安培力的微觀表現(xiàn)。 計算公式的推導:如圖所示,整個導線受到的磁場力(安培力)為F安 =BIL;其中I=nesv;設導線中共有N個自由電子N=nsL;每個電子受的磁場力為F,則F安=NF。由以上四式可得F=qvB。條件是v與B垂直。當v與B成θ角時,F(xiàn)=qvBsinθ。 2.洛倫茲力方向的判定 B R + + + + + + - - - - ― 在用左手定則時,四指必須指電流方向(不是速度方向),即正電荷定向移動的方向;對負電荷,四指應指負電荷定向移動方向的反方向。 【例1】磁流體發(fā)電機原理圖如右。等離子體高速從左向右噴射,兩極板間有如圖方向的勻強磁場。該發(fā)電機哪個極板為正極?兩板間最大電壓為多少? 解:由左手定則,正、負離子受的洛倫茲力分別向上、向下。所以上極板為正。正、負極板間會產(chǎn)生電場。當剛進入的正負離子受的洛倫茲力與電場力等值反向時,達到最大電壓:U=Bdv。當外電路斷開時,這也就是電動勢E。當外電路接通時,極板上的電荷量減小,板間場強減小,洛倫茲力將大于電場力,進入的正負離子又將發(fā)生偏轉(zhuǎn)。這時電動勢仍是E=Bdv,但路端電壓將小于Bdv。 在定性分析時特別需要注意的是: ⑴正負離子速度方向相同時,在同一磁場中受洛倫茲力方向相反。 ⑵外電路接通時,電路中有電流,洛倫茲力大于電場力,兩板間電壓將小于Bdv,但電動勢不變(和所有電源一樣,電動勢是電源本身的性質(zhì)。) ⑶注意在帶電粒子偏轉(zhuǎn)聚集在極板上以后新產(chǎn)生的電場的分析。在外電路斷開時最終將達到平衡態(tài)。 I 【例2】 半導體靠自由電子(帶負電)和空穴(相當于帶正電)導電,分為p型和n型兩種。p型中空穴為多數(shù)載流子;n型中自由電子為多數(shù)載流子。用以下實驗可以判定一塊半導體材料是p型還是n型:將材料放在勻強磁場中,通以圖示方向的電流I,用電壓表判定上下兩個表面的電勢高低,若上極板電勢高,就是p型半導體;若下極板電勢高,就是n型半導體。試分析原因。 解:分別判定空穴和自由電子所受的洛倫茲力的方向,由于四指指電流方向,都向右,所以洛倫茲力方向都向上,它們都將向上偏轉(zhuǎn)。p型半導體中空穴多,上極板的電勢高;n型半導體中自由電子多,上極板電勢低。 注意:當電流方向相同時,正、負離子在同一個磁場中的所受的洛倫茲力方向相同,所以偏轉(zhuǎn)方向相同。 3.洛倫茲力大小的計算 帶電粒子在勻強磁場中僅受洛倫茲力而做勻速圓周運動時,洛倫茲力充當向心力,由此可以推導出該圓周運動的半徑公式和周期公式: M N B O v 【例3】 如圖直線MN上方有磁感應強度為B的勻強磁場。正、負電子同時從同一點O以與MN成30角的同樣速度v射入磁場(電子質(zhì)量為m,電荷為e),它們從磁場中射出時相距多遠?射出的時間差是多少? 解:由公式知,它們的半徑和周期是相同的。只是偏轉(zhuǎn)方向相反。先確定圓心,畫出半徑,由對稱性知:射入、射出點和圓心恰好組成正三角形。所以兩個射出點相距2r,由圖還可看出,經(jīng)歷時間相差2T/3。答案為射出點相距,時間差為。關鍵是找圓心、找半徑和用對稱。 y x o B v v a O/ 【例4】 一個質(zhì)量為m電荷量為q的帶電粒子從x軸上的P(a,0)點以速度v,沿與x正方向成60的方向射入第一象限內(nèi)的勻強磁場中,并恰好垂直于y軸射出第一象限。求勻強磁場的磁感應強度B和射出點的坐標。 解:由射入、射出點的半徑可找到圓心O/,并得出半徑為;射出點坐標為(0,)。 二、帶電粒子在勻強磁場中的運動 帶電粒子在磁場中的運動是高中物理的一個難點,也是高考的熱點。在歷年的高考試題中幾乎年年都有這方面的考題。帶電粒子在磁場中的運動問題,綜合性較強,解這類問題既要用到物理中的洛侖茲力、圓周運動的知識,又要用到數(shù)學中的平面幾何中的圓及解析幾何知識。 1、帶電粒子在半無界磁場中的運動 O B S v θ P 【例5】一個負離子,質(zhì)量為m,電量大小為q,以速率v垂直于屏S經(jīng)過小孔O射入存在著勻強磁場的真空室中,如圖所示。磁感應強度B的方向與離子的運動方向垂直,并垂直于圖1中紙面向里. (1)求離子進入磁場后到達屏S上時的位置與O點的距離. (2)如果離子進入磁場后經(jīng)過時間t到達位置P,證明:直線OP與離子入射方向之間的夾角θ跟t的關系是。 解析:(1)離子的初速度與勻強磁場的方向垂直,在洛侖茲力作用下,做勻速圓周運動.設圓半徑為r,則據(jù)牛頓第二定律可得: ,解得 如圖所示,離了回到屏S上的位置A與O點的距離為:AO=2r 所以 (2)當離子到位置P時,圓心角: 因為,所以. r v R v O/ O 2.穿過圓形磁場區(qū)。畫好輔助線(半徑、速度、軌跡圓的圓心、連心線)。偏角可由求出。經(jīng)歷時間由得出。 注意:由對稱性,射出線的反向延長線必過磁場圓的圓心。 O A v0 B 【例6】如圖所示,一個質(zhì)量為m、電量為q的正離子,從A點正對著圓心O以速度v射入半徑為R的絕緣圓筒中。圓筒內(nèi)存在垂直紙面向里的勻強磁場,磁感應強度的大小為B。要使帶電粒子與圓筒內(nèi)壁碰撞多次后仍從A點射出,求正離子在磁場中運動的時間t.設粒子與圓筒內(nèi)壁碰撞時無能量和電量損失,不計粒子的重力。 解析:由于離子與圓筒內(nèi)壁碰撞時無能量損失和電量損失,每次碰撞后離子的速度方向都沿半徑方向指向圓心,并且離子運動的軌跡是對稱的,如圖所示。設粒子與圓筒內(nèi)壁碰撞n次(),則每相鄰兩次碰撞點之間圓弧所對的圓心角為2π/(n+1).由幾何知識可知,離子運動的半徑為 離子運動的周期為,又, 所以離子在磁場中運動的時間為. O' M N L A 【例7】圓心為O、半徑為r的圓形區(qū)域中有一個磁感強度為B、方向為垂直于紙面向里的勻強磁場,與區(qū)域邊緣的最短距離為L的O'處有一豎直放置的熒屏MN,今有一質(zhì)量為m的電子以速率v從左側(cè)沿OO'方向垂直射入磁場,越出磁場后打在熒光屏上之P點,如圖所示,求O'P的長度和電子通過磁場所用的時間。 P 解析 :電子所受重力不計。它在磁場中做勻速圓周運動,圓心為O″,半徑為R。圓弧段軌跡AB所對的圓心角為θ,電子越出磁場后做速率仍為v的勻速直線運動, 如圖4所示,連結(jié)OB,∵△OAO″≌△OBO″,又OA⊥O″A,故OB⊥O″B,由于原有BP⊥O″B,可見O、B、P在同一直線上,且∠O'OP=∠AO″B=θ,在直角三角形OO'P中,O'P=(L+r)tanθ,而,,所以求得R后就可以求出O'P了,電子經(jīng)過磁場的時間可用t=來求得。 由得R= M N O, L A O R θ/2 θ θ/2 B P O// , , 3.穿過矩形磁場區(qū)。一定要先畫好輔助線(半徑、速度及延長線)。偏轉(zhuǎn)角由sinθ=L/R求出。側(cè)移由R2=L2-(R-y)2解出。經(jīng)歷時間由得出。 注意,這里射出速度的反向延長線與初速度延長線的交點不再是寬度線段的中點,這點與帶電粒子在勻強電場中的偏轉(zhuǎn)結(jié)論不同! 【例8】如圖所示,一束電子(電量為e)以速度v垂直射入磁感強度為B,寬度為d的勻強磁場中,穿透磁場時速度方向與電子原來入射方向的夾角是30,則電子的質(zhì)量是 ,穿透磁場的時間是 。 解析:電子在磁場中運動,只受洛侖茲力作用,故其軌跡是圓弧的一部分,又因為f⊥v,故圓心在電子穿入和穿出磁場時受到洛侖茲力指向交點上,如圖中的O點,由幾何知識知,AB間圓心角θ=30,OB為半徑。 ∴r=d/sin30=2d,又由r=mv/Be得m=2dBe/v 又∵AB圓心角是30,∴穿透時間t=T/12,故t=πd/3v。 帶電粒子在長足夠大的長方形磁場中的運動時要注意臨界條件的分析。如已知帶電粒子的質(zhì)量m和電量e,若要帶電粒子能從磁場的右邊界射出,粒子的速度v必須滿足什么條件?這時必須滿足r=mv/Be>d,即v>Bed/m. 【例9】長為L的水平極板間,有垂直紙面向內(nèi)的勻強磁場,如圖所示,磁感強度為B,板間距離也為L,板不帶電,現(xiàn)有質(zhì)量為m,電量為q的帶正電粒子(不計重力),從左邊極板間中點處垂直磁感線以速度v水平射入磁場,欲使粒子不打在極板上,可采用的辦法是: A.使粒子的速度v- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三物理第一輪復習 磁場教案16 新人教版 2019 2020 年高 物理 第一輪 復習 磁場 教案 16 新人
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2552692.html