2019-2020年高中數(shù)學 第二章數(shù)列 §3.3 等差數(shù)列的前n項和第二課時教案 新人教A版必修5.doc
《2019-2020年高中數(shù)學 第二章數(shù)列 §3.3 等差數(shù)列的前n項和第二課時教案 新人教A版必修5.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 第二章數(shù)列 §3.3 等差數(shù)列的前n項和第二課時教案 新人教A版必修5.doc(2頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 第二章數(shù)列 3.3 等差數(shù)列的前n項和第二課時教案 新人教A版必修5 授課類型:新授課 (第2課時) ●教學目標 知識與技能:進一步熟練掌握等差數(shù)列的通項公式和前n項和公式;了解等差數(shù)列的一些性質,并會用它們解決一些相關問題;會利用等差數(shù)列通項公式與前 項和的公式研究 的最值; 過程與方法:經(jīng)歷公式應用的過程; 情感態(tài)度與價值觀:通過有關內(nèi)容在實際生活中的應用,使學生再一次感受數(shù)學源于生活,又服務于生活的實用性,引導學生要善于觀察生活,從生活中發(fā)現(xiàn)問題,并數(shù)學地解決問題。 ●教學重點 熟練掌握等差數(shù)列的求和公式 ●教學難點 靈活應用求和公式解決問題 ●教學過程 Ⅰ.課題導入 首先回憶一下上一節(jié)課所學主要內(nèi)容: 1.等差數(shù)列的前項和公式1: 2.等差數(shù)列的前項和公式2: Ⅱ.講授新課 探究:——課本P51的探究活動 結論:一般地,如果一個數(shù)列的前n項和為,其中p、q、r為常數(shù),且,那么這個數(shù)列一定是等差數(shù)列嗎?如果是,它的首項與公差分別是多少? 由,得 當時== =2p 對等差數(shù)列的前項和公式2:可化成式子: ,當d≠0,是一個常數(shù)項為零的二次式 [范例講解] 等差數(shù)列前項和的最值問題 課本P51的例4 解略 小結: 對等差數(shù)列前項和的最值問題有兩種方法: (1) 利用: 當>0,d<0,前n項和有最大值可由≥0,且≤0,求得n的值 當<0,d>0,前n項和有最小值可由≤0,且≥0,求得n的值 (2) 利用: 由利用二次函數(shù)配方法求得最值時n的值 Ⅲ.課堂練習 1.一個等差數(shù)列前4項的和是24,前5項的和與前2項的和的差是27,求這個等差數(shù)列的通項公式。 2.差數(shù)列{}中, =-15, 公差d=3, 求數(shù)列{}的前n項和的最小值。 Ⅳ.課時小結 1.前n項和為,其中p、q、r為常數(shù),且,一定是等差數(shù)列,該數(shù)列的 首項是 公差是d=2p 通項公式是 2.差數(shù)列前項和的最值問題有兩種方法: (1)當>0,d<0,前n項和有最大值可由≥0,且≤0,求得n的值。 當<0,d>0,前n項和有最小值可由≤0,且≥0,求得n的值。 (2)由利用二次函數(shù)配方法求得最值時n的值 Ⅴ.課后作業(yè) 課本P53習題[A組]的5、6題 ●板書設計 ●授后記- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 第二章數(shù)列 §3.3 等差數(shù)列的前n項和第二課時教案 新人教A版必修5 2019 2020 年高 數(shù)學 第二 數(shù)列 3.3 等差數(shù)列 課時 教案 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2568692.html