2019-2020年高中數(shù)學 1.2 任意角的三角函數(shù) 1.2.2 單位圓與三角函數(shù)線課后訓練 新人教B版必修4.doc
《2019-2020年高中數(shù)學 1.2 任意角的三角函數(shù) 1.2.2 單位圓與三角函數(shù)線課后訓練 新人教B版必修4.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高中數(shù)學 1.2 任意角的三角函數(shù) 1.2.2 單位圓與三角函數(shù)線課后訓練 新人教B版必修4.doc(4頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高中數(shù)學 1.2 任意角的三角函數(shù) 1.2.2 單位圓與三角函數(shù)線課后訓練 新人教B版必修4 1.若角α的正切線位于第一象限,則角α是( ) A.第一象限的角 B.第一、二象限的角 C.第三象限的角 D.第一、三象限的角 2.下列命題中,正確的是( ) A.三角形的內角必是第一或第二象限的角 B.角α的終邊在x軸上時,角α的正弦線、正切線分別變成了一個點 C.終邊在第二象限的角是鈍角 D.終邊相同的角必然相等 3.若θ∈,則sin θ+cos θ的一個可能值是( ) A. B. C. D.1 4.如圖,設α是一個任意角,它的終邊與單位圓交于點P(x,y),我們把叫做α的正割,記作sec α;把叫做α的余割,記作csc α,則( ) A. B. C. D. 5.已知sin α>sin β,那么下列命題成立的是( ) A.若α,β是第一象限的角,則cos α>cos β B.若α,β是第二象限的角,則tan α>tan β C.若α,β是第三象限的角,則cos α>cos β D.若α,β是第四象限的角,則tan α>tan β 6.利用三角函數(shù)線求cos 2 040的函數(shù)值是__________. 7.設集合,集合,則M∩N=__________. 8.在(0,2π)內,使sin x>cos x成立的x的取值范圍為__________. 9.當α=3 rad時,利用三角函數(shù)線分析點P(sin 3-cos 3,sin 3+cos 3)所在的象限. 10.已知關于x的方程(2sin α-1)x2-4x+4sin α+2=0有兩個不相等的正根,試求角α的取值范圍. 參考答案 1.解析:由正切線的定義知,當角α是第一、三象限的角時,正切線都在第一象限. 答案:D 2.解析:當三角形的一個內角為90時,這個內角不是象限角,故選項A不正確;選項B正確;終邊在第二象限的角的范圍是,k∈Z,故選項C不正確;終邊相同的角不一定相等,它們相差2π的整數(shù)倍,故選項D不正確.故選B. 答案:B 3.解析:由θ∈,結合三角函數(shù)線的知識知sin θ+cos θ>1,四個選項中僅有,故選C. 答案:C 4.答案:A 5.解析:利用三角函數(shù)線依次判斷. 答案:D 6.答案: 7.解析:如圖所示,畫出單位圓,并分別作,兩條直線,根據(jù)三角函數(shù)線的特點知,θ的終邊與單位圓的交點坐標應滿足且,只有圖中陰影部分滿足條件,故M∩N=. 答案: 8.解析:在單位圓中畫三角函數(shù)線,如圖所示,要使在(0,2π)內,sin x>cos x,則x∈. 答案: 9. 解:因為<3<π,所以作出單位圓及角α=3的正弦線和余弦線,如圖所示. 設,的數(shù)量分別為a,b, 所以sin 3=a>0,cos 3=b<0. 所以sin 3-cos 3>0. 因為|MP|<|OM|, 即|a|<|b|, 所以sin 3+cos 3=a+b<0. 故當α=3 rad時,P(sin 3-cos 3,sin 3+cos 3)在第四象限. 10.解:設方程的兩根為x1,x2,根據(jù)題意列方程組得 即 化簡得 故. 如圖,利用三角函數(shù)線,可知α的取值范圍是∪.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高中數(shù)學 1.2 任意角的三角函數(shù) 1.2.2 單位圓與三角函數(shù)線課后訓練 新人教B版必修4 2019 2020 年高 數(shù)學 任意 三角函數(shù) 單位 課后 訓練 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2593877.html