2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 充分條件與必要條件教案 理.doc
《2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 充分條件與必要條件教案 理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 充分條件與必要條件教案 理.doc(5頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 充分條件與必要條件教案 理 教材分析 充分條件與必要條件是簡(jiǎn)易邏輯的重要內(nèi)容.學(xué)習(xí)數(shù)學(xué)需要全面地理解概念,正確地進(jìn)行表述、判斷和推理,這就離不開對(duì)充分條件與必要條件的掌握和運(yùn)用,而且它們也是認(rèn)識(shí)問題、研究問題的工具.這節(jié)內(nèi)容在“四種命題”的基礎(chǔ)上,通過若干實(shí)例,總結(jié)出了充分條件、必要條件和充要條件的概念,給出了判斷充分條件、必要條件的方法和步驟.教學(xué)的重點(diǎn)與難點(diǎn)是關(guān)于充要條件的判斷. 教學(xué)目標(biāo) 1. 結(jié)合實(shí)例,理解充分條件、必要條件、充要條件的意義. 2. 理解充要條件,掌握判斷充要條件的方法和步驟. 3. 通過充要條件的學(xué)習(xí),培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的理解能力和邏輯推理能力,逐步提高學(xué)生分析問題、解決問題的能力. 任務(wù)分析 這節(jié)內(nèi)容是學(xué)生在學(xué)習(xí)了“四種命題”、會(huì)判斷一個(gè)命題的真假的基礎(chǔ)上,主要根據(jù)“pq”給出了充分條件、必要條件及充要條件.雖然從實(shí)例引入,但是學(xué)生對(duì)充分條件、必要條件的理解,特別是對(duì)必要條件的理解有一定困難.對(duì)于本節(jié)內(nèi)容的學(xué)習(xí),首先要分清誰是條件,誰是結(jié)論,其次要進(jìn)行兩次推理或判斷. (1)若“條件結(jié)論”,則條件是結(jié)論的充分條件,或稱結(jié)論是條件的必要條件. (2)若“條件結(jié)論”,則條件是結(jié)論的不充分條件,或稱結(jié)論是條件的不必要條件. 教學(xué)設(shè)計(jì) 一、問題情境 [提出問題] 1. 寫出命題“若x>0,則x2>0”的逆命題、否命題和逆否命題,并分別判斷原命題、逆命題、否命題、逆否命題的真假. 原命題:若x>0,則x2>0.真命題. 逆命題:若x2>0,則x>0.假命題. 否命題:若x≤0,則x2≤0.假命題. 逆否命題:若x2≤0,則x≤0.真命題. 2. “若p則q”形式的命題,其中有的命題為真,有的命題為假. “若p則q”為真,即如果p成立,那么q一定成立,記作pq或qp. “若p則q”為假,即如果p成立,那么q不一定成立,即由p推不出q,記作pq. [進(jìn)一步的問題] “若x>0,則x2>0”,為真,可記作“pq”. (1)x>0是x2>0的什么條件? (2)x2>0是x>0的什么條件? 二、建立模型 1. 學(xué)生分析討論,教師點(diǎn)拔 (1)x>0x2>0,x>0是x2>0的什么條件? 在這個(gè)問題中,“x>0”是“條件”,“x2>0”是“結(jié)論”;已知x>0x2>0表示若“條件”成立,則“結(jié)論”一定成立,說明“條件”蘊(yùn)涵“結(jié)論”,說明“條件”是“結(jié)論”的充分條件. (2)x2>0x>0,x2>0是x>0的什么條件? 在這個(gè)問題中,“x2>0”是“條件”,“x>0”是“結(jié)論”;已知x>0x2>0表示若“結(jié)論”成立,則“條件”一定成立,說明“結(jié)論”蘊(yùn)涵“條件”,即若“條件”成立,則“結(jié)論”不一定成立,說明“結(jié)論”是“條件”的必要條件. 2. 師生共同參與,給出充分條件、必要條件的定義 如果已知pq,那么,p是q的充分條件,q是p的必要條件. 3. 充要條件 問題:記p:三角形的三條邊相等,q:三角形的三個(gè)角相等.問:p是q的什么條件? 解:(1)pq,即p是q的充分條件. (2)qp,即p是q的必要條件. 綜合(1)(2),我們就說p是q的充要條件. 如果pq,且qp,記作pq,這時(shí),p既是q的充分條件,又是q的必要條件,那么就說p是q的充分必要條件,簡(jiǎn)稱充要條件. 4. 提出問題,組織學(xué)生討論 如何判斷充要條件? (1)分清誰是條件p,誰是結(jié)論q. (2)進(jìn)行兩次推理或判斷,即判斷pq是否成立,qp是否成立. (3)根據(jù)(2)寫出結(jié)論. 三、解釋應(yīng)用 [例 題] 1. 指出下列各組命題中,p是q的什么條件,q是p的什么條件. (1)p:x>0;q:x2>0. (p是q的充分不必要條件,q是p的必要不充分條件) (2)p:x=y(tǒng);q:x2=y(tǒng)2. (p是q的充分不必要條件,q是p的必要不充分條件) (3)p:兩三角形面積相等;q:兩三角形全等. (p是q的必要不充分條件,q是p的充分不必要條件) (4)p:兩直線平行;q:內(nèi)錯(cuò)角相等. (p是q的充要條件,q是p的充要條件) (5)p:x=y(tǒng);q:x2+y2=1. (p是q的既不充分又不必要條件,q是p的既不充分又不必要條件) 2. 指出下列各組命題中,p是q的什么條件. (1)p:(x-2)(x-3)=0;q:x=3. (2)p:四邊形對(duì)角線相等;q:四邊形是矩形. (3)p:a≠0;q:ab≠0. (4)p:a+5是無理數(shù);q:a是無理數(shù). (5)p:x≤5;q:x≤3. [練 習(xí)] 1. 下列各組命題中的p是q的什么條件? (1)p:x2+y2=0,q:xy=0. (2)p:m>0;q:x2+x-m=0有實(shí)數(shù)根. (3)p:a>b;q:a2>b2. (4)p:x2=3x+4;q:x= (5)p:x>-1;q:x>1. (6)p:a,b都是偶數(shù);q:a+b是偶數(shù). 2. (1)如果原命題若p則q為真而逆命題為假,那么p是q的條件. (2)如果原命題若p則q為假而逆命題為真,那么p是q的條件. (3)如果原命題若p則q與其逆命題都為真,那么p是q的條件. (4)如果原命題若p則q與其逆命題都為假,那么p是q的條件. 四、拓展延伸 1. 已知p,q都是r的必要條件,S是r的充分條件,q是S的充分條件,那么, (1)S是q的什么條件? (2)r是q的什么條件? (3)p是q的什么條件? 2. “關(guān)于x的方程ax2+2x+1=0至少有一個(gè)負(fù)的實(shí)根”的充要條件是什么? 3. “3x2-10x+k=0有兩個(gè)同號(hào)且不相等實(shí)根”的充要條件是什么? 點(diǎn) 評(píng) 這篇案例注重新、舊知識(shí)的內(nèi)在聯(lián)系,以舊引新,過渡自然.首先,復(fù)習(xí)已學(xué)過的知識(shí)“四種命題”和判斷命題的真假,并以此巧妙地引出了推斷符號(hào)pq,pq.其次,在此基礎(chǔ)上,通過實(shí)例,創(chuàng)設(shè)問題情境,引出課題p是q的什么條件.最后,明確充要條件,并給出判斷充要條件的方法和步驟.環(huán)環(huán)相扣,層層深入,重點(diǎn)突出,抓住了關(guān)鍵.例題與練習(xí)由淺入深,符合學(xué)生的認(rèn)知規(guī)律.拓展延伸富有新意,有利于培養(yǎng)學(xué)生的探索能力和創(chuàng)新意識(shí),有利于培養(yǎng)學(xué)生的思維能力和思維品質(zhì),整個(gè)設(shè)計(jì)圓滿地完成了教學(xué)任務(wù).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)總復(fù)習(xí) 充分條件與必要條件教案 2019 2020 年高 數(shù)學(xué) 復(fù)習(xí) 充分 條件 必要條件 教案
鏈接地址:http://www.3dchina-expo.com/p-2663575.html