2019-2020年高三數(shù)學二輪復習 專題三第一講 三角函數(shù)的圖象與性質(zhì)教案 理.doc
《2019-2020年高三數(shù)學二輪復習 專題三第一講 三角函數(shù)的圖象與性質(zhì)教案 理.doc》由會員分享,可在線閱讀,更多相關《2019-2020年高三數(shù)學二輪復習 專題三第一講 三角函數(shù)的圖象與性質(zhì)教案 理.doc(6頁珍藏版)》請在裝配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學二輪復習 專題三第一講 三角函數(shù)的圖象與性質(zhì)教案 理 類型一 三角函數(shù)的概念、誘導公式 1.角α終邊上任一點P(x,y),則P到原點O的距離為r=,故sin α=,cos α=,tan α=. 2.誘導公式:“奇變偶不變、符號看象限”. 3.同角三角函數(shù)基本關系式: sin 2α+cos 2α=1,tan α=. [例1] (xx年高考山東卷)如圖,在平面直角坐標系xOy中,一單位圓的圓心的初始位置在(0,1),此時圓上一點P的位置在(0,0),圓在x軸上沿正向滾動.當圓滾動到圓心位于(2,1)時,的坐標為________. [解析] 利用平面向量的坐標定義、解三角形的知識以及數(shù)形結合思想求解. 設A(2,0),B(2,1),由題意知劣弧PA長為2,∠ABP==2. 設P(x,y),則x=2-1cos (2-)=2-sin 2,y=1+1sin (2-)=1-cos 2, ∴的坐標為(2-sin 2,1-cos 2). [答案] (2-sin 2,1-cos 2) 跟蹤訓練 1.(xx年綿陽摸底)sin (-225)=( ) A. B.- C. D. 解析:sin (-225)=sin (-360+135)=sin 135 =sin 45=. 答案:A 2.(xx年合肥模擬)已知tan x=2,則sin 2x+1=( ) A.0 B. C. D. 解析:sin 2x+1===,故選B 答案:B 類型二 三角函數(shù)性質(zhì) 1.函數(shù)y=Asin (ωx+φ),當φ=kπ(k∈Z)時為奇函數(shù),當φ=kπ+(k∈Z)時為偶函數(shù). 2.函數(shù)y=Asin (ωx+φ), 令ωx+φ=kπ+,可求得對稱軸方程. 令ωx+φ=kπ(k∈Z),可求得對稱中心的橫坐標. 3.將ωx+φ看作整體,可求得y=Asin (ωx+φ)的單調(diào)區(qū)間,注意ω的符號. [例2] (xx年高考課標全國卷)已知ω>0,函數(shù)f(x)=sin (ωx+)在(,π)上單調(diào)遞減,則ω的取值范圍是( ) A.[,] B.[,] C.(0,] D.(0,2] [解析] 結合特殊值,求解三角函數(shù)的減區(qū)間,并驗證結果. 取ω=,f(x)=sin (x+),其減區(qū)間為[kπ+,kπ+π],k∈Z,顯然(,π)[kπ+,kπ+π],k∈Z,排除B,C.取ω=2,f(x)=sin (2x+),其減區(qū)間為[kπ+,kπ+π],k∈Z,顯然(,π)[kπ+,kπ+π],k∈Z,排除D. [答案] A 跟蹤訓練 (xx年唐山模擬)若x=是函數(shù)f(x)=sin ωx+cos ωx圖象的一條對稱軸,當ω取最小正數(shù)時( ) A.f(x)在(0,)上單調(diào)遞增 B.f(x)在(,)上單調(diào)遞增 C.f(x)在(-,0)上單調(diào)遞減 D.f(x)在(-,)上單調(diào)遞減 解析:f(x)=sin ωx+cos ωx=2(sin ωx+cos ωx)=2sin (ωx+),依題意可知f()=2sin (ω+)=2,∴ω+=kπ+(k∈Z),∴ω=6(k+),當k=0時,ω取得最小正數(shù)2,故函數(shù)f(x)=2sin (2x+),由2kπ-≤2x+≤2kπ+(k∈Z),可知函數(shù)f(x)的單調(diào)遞增區(qū)間為[kπ-,kπ+](k∈Z),當k=0時,函數(shù)f(x)的一個單調(diào)遞增區(qū)間為[-,],∵(0,)[-,],故選A. 答案:A 類型三 函數(shù)的圖象及變換 函數(shù)y=Asin (ωx+φ)的圖象 (1)“五點法”作圖: 設z=ωx+φ,令z=0,,π,,2π,求出x的值與相應y的值,描點、連線可得. (2)圖象變換: [例3] (xx年高考湖南卷)已知函數(shù)f(x)=Asin (ωx+φ)(x∈R,ω>0,0<φ<)的部分圖象如圖所示. (1)求函數(shù)f(x)的解析式; (2)求函數(shù)g(x)=f(x-)-f(x+)的單調(diào)遞增區(qū)間. [解析] (1)由圖象知,周期T=2(-)=π, 所以ω==2. 因為點(,0)在函數(shù)圖象上, 所以Asin (2+φ)=0, 即sin (+φ)=0. 又因為0<φ<,所以<+φ<. 從而+φ=π,即φ=. (2)g(x)=2sin [2(x-)+]-2sin [2(x+)+]=2sin 2x-2sin (2x+) =2sin 2x-2(sin 2x+cos 2x) =sin 2x-cos 2x=2sin (2x-). 由2kπ-≤2x-≤2kπ+, 得kπ-≤x≤kπ+,k∈Z. 所以函數(shù)g(x)的單調(diào)遞增區(qū)間是[kπ-,kπ+],k∈Z. 跟蹤訓練 (原創(chuàng)題)為了使得變換后的函數(shù)的圖象關于點(-,0)成中心對稱,只需將原函數(shù)y=sin (2x+)的圖象( ) A.向左平移個單位長度 B.向左平移個單位長度 C.向右平移個單位長度 D.向右平移個單位長度 解析:函數(shù)y=sin (2x+)的圖象的對稱中心為(-,0)(k∈Z),其中離點(-,0)最近的對稱中心為(-,0),故只需將原函數(shù)的圖象向右平移個單位長度即可. 答案:C 析典題(預測高考) 高考真題 【真題】 (xx年高考天津卷)已知函數(shù)f(x)=sin(2x+)+sin (2x-)+2cos 2x-1,x∈R. (1)求函數(shù)f(x)的最小正周期; (2)求函數(shù)f(x)在區(qū)間[-,]上的最大值和最小值. 【解析】 (1)f(x)=sin 2xcos +cos 2xsin +sin 2xcos -cos 2xsin +cos 2x=sin 2x+cos 2x=sin (2x+), 所以f(x)的最小正周期T==π. (2)因為f(x)在區(qū)間[-,]上是增函數(shù),在區(qū)間[,]上是減函數(shù),又f(-)=-1,f()=,f()=1,故函數(shù)f(x)在區(qū)間[-,]上的最大值為,最小值為-1. 【名師點睛】 本題主要考查三角變換、三角函數(shù)性質(zhì)及三角函數(shù)最值求法,是高考命題的熱點內(nèi)容與題型,難度不大. 考情展望 高考對三角函數(shù)的圖象與性質(zhì)的考查,各種題型都有,著重體現(xiàn)在選擇填空中考查圖象變換及性質(zhì),在解答題中融三角變換與圖象性質(zhì)于一體,有時涉及平面向量知識. 名師押題 【押題】已知向量a=(cos x,2cos x),向量b=(2cos x,sin(π-x)),函數(shù)f(x)=ab+1. (1)求函數(shù)f(x)的解析式和最小正周期; (2)若x∈[0,],求函數(shù)f(x)的最大值和最小值. 【解析】 (1)∵a=(cos x,2cos x),b=(2cos x,sin (π-x)), ∴f(x)=ab+1 =2cos 2x+2cos xsin (π-x)+1 =1+cos 2x+2sin xcos x+1 =cos 2x+sin 2x+2 =sin (2x+)+2. ∴函數(shù)f(x)的最小正周期T==π. (2)∵x∈[0,],∴2x+∈[,]. ∴當2x+=,即x=時,函數(shù)f(x)有最大值2+; 當2x+=,即x=時,函數(shù)f(x)有最小值1.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權。
- 關 鍵 詞:
- 2019-2020年高三數(shù)學二輪復習 專題三第一講 三角函數(shù)的圖象與性質(zhì)教案 2019 2020 年高 數(shù)學 二輪 復習 專題 第一 三角函數(shù) 圖象 性質(zhì) 教案
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-2744209.html