2019-2020年高考數(shù)學(xué) 中等生百日捷進(jìn)提升系列(綜合提升篇)專(zhuān)題07 選講內(nèi)容(含解析).doc
《2019-2020年高考數(shù)學(xué) 中等生百日捷進(jìn)提升系列(綜合提升篇)專(zhuān)題07 選講內(nèi)容(含解析).doc》由會(huì)員分享,可在線(xiàn)閱讀,更多相關(guān)《2019-2020年高考數(shù)學(xué) 中等生百日捷進(jìn)提升系列(綜合提升篇)專(zhuān)題07 選講內(nèi)容(含解析).doc(22頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高考數(shù)學(xué) 中等生百日捷進(jìn)提升系列(綜合提升篇)專(zhuān)題07 選講內(nèi)容(含解析) 幾何證明選講 【背一背重點(diǎn)知識(shí)】 1、比例線(xiàn)段有關(guān)定理 (1)平行線(xiàn)等分線(xiàn)段定理:如果一組平行線(xiàn)在一條直線(xiàn)上截得的線(xiàn)段相等,那么在其他直線(xiàn)上截得的線(xiàn)段也相等。 推理1:經(jīng)過(guò)三角形一邊的中點(diǎn)與另一邊平行的直線(xiàn)必平分第三邊。 推理2:經(jīng)過(guò)梯形一腰的中點(diǎn),且與底邊平行的直線(xiàn)平分另一腰。 (2)平分線(xiàn)分線(xiàn)段成比例定理:三條平行線(xiàn)截兩條直線(xiàn),所得的對(duì)應(yīng)線(xiàn)段成比例。 推論:平行于三角形一邊的直線(xiàn)截其他兩邊(或兩邊的延長(zhǎng)線(xiàn))所得的對(duì)應(yīng)線(xiàn)段成比例。 2、相似三角形的判定及性質(zhì) (1)相似三角形的判定: 定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。 判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。 判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且?jiàn)A角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似。 判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。 (2)相似三角形的性質(zhì): 性質(zhì)1:相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線(xiàn)的比和對(duì)應(yīng)平分線(xiàn)的比都等于相似比; 性質(zhì):2:相似三角形周長(zhǎng)的比等于相似比; 性質(zhì)3:相似三角形面積的比等于相似比的平方。 注:相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的面積比等于相似比的平方。 3、直角三角形的射影定理 射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。 4、圓周角定理 圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。 圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。 推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。 推論2:半圓(或直徑)所對(duì)的圓周角是直角;90的圓周角所對(duì)的弦是直徑。 5、圓內(nèi)接四邊形的性質(zhì)與判定定理 定理1:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)。 定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。 圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。 推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。 6、圓的切線(xiàn)的性質(zhì)及判定定理 切線(xiàn)的性質(zhì)定理:圓的切線(xiàn)垂直于經(jīng)過(guò)切點(diǎn)的半徑。 推論1:經(jīng)過(guò)圓心且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)切點(diǎn)。 推論2:經(jīng)過(guò)切點(diǎn)且垂直于切線(xiàn)的直線(xiàn)必經(jīng)過(guò)圓心。 切線(xiàn)的判定定理:經(jīng)過(guò)半徑的外端并且垂直于這條半徑的直線(xiàn)是圓的切線(xiàn)。 7、弦切角的性質(zhì) 弦切角定理:弦切角等于它所夾的弧所對(duì)的圓周角。 8、與圓有關(guān)的比例線(xiàn)段(圓冪定理) 相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線(xiàn)段長(zhǎng)的積相等。 割線(xiàn)定理:從園外一點(diǎn)引圓的兩條割線(xiàn),這一點(diǎn)到每條割線(xiàn)與圓的交點(diǎn)的兩條線(xiàn)段長(zhǎng)的積相等。 切割線(xiàn)定理:從圓外一點(diǎn)引圓的切線(xiàn)和割線(xiàn),切線(xiàn)長(zhǎng)是這點(diǎn)到割線(xiàn)與圓交點(diǎn)的兩條線(xiàn)段長(zhǎng)的比例中項(xiàng)。 切線(xiàn)長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線(xiàn),它們的切線(xiàn)長(zhǎng)相等,圓心和這一點(diǎn)的連線(xiàn)平分兩條切線(xiàn)的夾角。 【講一講提高技能】 1、 相似三角形的判定與性質(zhì)的應(yīng)用 (1) 判定兩個(gè)三角形相似的方法:兩角對(duì)應(yīng)相等,兩三角形相似;兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似;三邊對(duì)應(yīng)成比例,兩三角形相似;相似三角形的定義. (2) 證明線(xiàn)段成比例,若已知條件中沒(méi)有平行線(xiàn),但有三角形相似的條件(如角相等,有相等的比例式等),常考慮相似三角形的性質(zhì)構(gòu)造比例式或利用中間比求解. (3)相似三角形的性質(zhì)應(yīng)用可用來(lái)考查與相似三角形相關(guān)的元素,如兩個(gè)三角形的高、周長(zhǎng)、角平分線(xiàn)、中線(xiàn)、面積、外接圓的直徑、內(nèi)切圓的面積等. 例1如圖3,在平行四邊形中,點(diǎn)在上且,與交于點(diǎn),則 . 【解析】 2、四點(diǎn)共圓的證明方法 (1)求證四邊形的一個(gè)外角等于與它不相鄰的內(nèi)角;(2)當(dāng)它們?cè)谝粭l線(xiàn)段同側(cè)時(shí),可證它們對(duì)此線(xiàn)段張角相等,也可以證明它們與某一定點(diǎn)距離相等;如兩點(diǎn)在一條線(xiàn)段異側(cè),則證明它們與線(xiàn)段兩端點(diǎn)連成的凸四邊形對(duì)角互補(bǔ)。 例2如圖,在正中,點(diǎn)分別在邊上,且,相交于點(diǎn).求證: (Ⅰ)四點(diǎn)共圓; (Ⅱ). 【答案】(Ⅰ)見(jiàn)解析;(Ⅱ)見(jiàn)解析. 【解析】 平面幾何中有關(guān)角與比例線(xiàn)段問(wèn)題的求解方法 (1)與切線(xiàn)有關(guān)的角度問(wèn)題,應(yīng)考慮應(yīng)用弦切角的性質(zhì)定理求解; (2)與切線(xiàn)有關(guān)的比例式或線(xiàn)段問(wèn)題,應(yīng)注意利用弦切角,確定三角形相似的條件,若條件不明顯需添加輔助線(xiàn). (3)與圓有關(guān)的等積線(xiàn)段或成比例的線(xiàn)段,常利用圓周角或弦切角證明三角形相似,在相似三角形中尋找比例線(xiàn)段;也可以利用相交弦定理、切割線(xiàn)定理證明線(xiàn)段成比例,在實(shí)際應(yīng)用中,一般涉及兩條相交弦應(yīng)首先考慮相交弦定理,涉及兩條割線(xiàn)就要想到割線(xiàn)定理,見(jiàn)到切線(xiàn)和割線(xiàn)時(shí)要注意應(yīng)用切割線(xiàn)定理. 例3過(guò)點(diǎn)作圓的割線(xiàn)與切線(xiàn)為切點(diǎn),連接,的平分線(xiàn)與,分別交于點(diǎn). (1)求證:; (2)若求的大?。? 【答案】(1)見(jiàn)解析;(2) 【解析】 【練一練提升能力】 1. 如圖,為⊙的兩條切線(xiàn),切點(diǎn)分別為,過(guò)的中點(diǎn)作割線(xiàn)交⊙于兩點(diǎn),若則 . 分析:根據(jù)切割線(xiàn)定理得,變形即得. 【解析】由切割線(xiàn)定理得,所以,所以. 2. 如圖,為⊙外一點(diǎn),交⊙于,,切⊙于為線(xiàn)段的中點(diǎn),交⊙于,線(xiàn)段的延長(zhǎng)線(xiàn)與⊙交于,連接.求證: (Ⅰ)∽; (Ⅱ). 【答案】詳見(jiàn)解析. 【解析】 極坐標(biāo)與參數(shù)方程 【背一背重點(diǎn)知識(shí)】 1.平面直角坐標(biāo)系中的伸縮變換: 2.極坐標(biāo)系 (1)極坐標(biāo)系的概念:平面內(nèi)取一個(gè)定點(diǎn),叫做極點(diǎn),自極點(diǎn)引一條射線(xiàn),叫做極軸;再選定一個(gè)長(zhǎng)度單位,一個(gè)角度單位(通常取弧度)及其正方向(通常取逆時(shí)針?lè)较?,這樣就建立了一個(gè)極坐標(biāo)系.設(shè)M是平面內(nèi)一點(diǎn),極點(diǎn)與點(diǎn)M的距離|OM|叫做點(diǎn)M的極徑,記為;以極軸為始邊,射線(xiàn)為終邊的角叫做點(diǎn)M的極角,記為.有序數(shù)對(duì)叫做點(diǎn)M的極坐標(biāo),記作. (2)直角坐標(biāo)與極坐標(biāo)的互化:把直角坐標(biāo)系的原點(diǎn)作為極點(diǎn),x軸的正半軸作為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位.設(shè)是坐標(biāo)平面內(nèi)任意一點(diǎn),它的直角坐標(biāo)是,極坐標(biāo)是,則極坐標(biāo)與直角坐標(biāo)的互化公式如表: 點(diǎn) 直角坐標(biāo) 極坐標(biāo) 互化公式 (3) 常見(jiàn)曲線(xiàn)的極坐標(biāo)方程: 曲線(xiàn) 圖形 極坐標(biāo)方程 圓心在極點(diǎn),半徑為的圓 圓心為,半徑為的圓 圓心為,半徑為的圓 過(guò)極點(diǎn),傾斜角為的直線(xiàn) (1) (2) 過(guò)點(diǎn),與極軸垂直的直線(xiàn) 過(guò)點(diǎn),與極軸平行的直線(xiàn) 3、參數(shù)方程 (1)參數(shù)方程的概念:一般地,在平面直角坐標(biāo)系中,如果曲線(xiàn)上任意一點(diǎn)的坐標(biāo)都是某個(gè)變數(shù)的函數(shù)①,并且對(duì)于的每一個(gè)允許值,由方程組①所確定的點(diǎn)都在這條曲線(xiàn)上,那么方程①就叫做這條曲線(xiàn)的參數(shù)方程,聯(lián)系變數(shù)的變數(shù)叫做參變數(shù),簡(jiǎn)稱(chēng)參數(shù),相對(duì)于參數(shù)方程而言,直接給出點(diǎn)的坐標(biāo)間關(guān)系的方程叫做普通方程. (2)參數(shù)方程和普通方程的互化:曲線(xiàn)的參數(shù)方程和普通方程是曲線(xiàn)方程的不同形式,一般地可以通過(guò)消去參數(shù)而從參數(shù)方程得到普通方程.在參數(shù)方程與普通方程的互化中,必須使的取值范圍保持一致. (3)常見(jiàn)曲線(xiàn)的參數(shù)方程: ①圓的參數(shù)方程為 (為參數(shù)); ②橢圓的參數(shù)方程為 (為參數(shù)); ③雙曲線(xiàn)的參數(shù)方程 (為參數(shù)); ④拋物線(xiàn)參數(shù)方程 為參數(shù)); ⑤過(guò)定點(diǎn)、傾斜角為的直線(xiàn)的參數(shù)方程(為參數(shù))。 【講一講提高技能】 1、 極坐標(biāo)方程與直角坐標(biāo)方程的互化方法 若極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與軸正半軸重合,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位,則極坐標(biāo)方程與直角坐標(biāo)方程可以互化,極坐標(biāo)方程化為直角坐標(biāo)方程時(shí)通常通過(guò)構(gòu)造的形式,其中方程兩邊同乘以或同時(shí)平方是常用的變形方法,要注意變形的等價(jià)性。 例1以為極點(diǎn)的極坐標(biāo)系中,圓和直線(xiàn)相交于兩點(diǎn).若是等邊三角形,則的值為_(kāi)__________. 分析:根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,得到圓、直線(xiàn)的直角坐標(biāo)方程,由是等邊三角形,得到其中一個(gè)交點(diǎn)坐標(biāo)為,代入圓的方程即得. 【解析】 2、參數(shù)方程與普通方程的互化方法 ①將參數(shù)方程化為普通方程,需要根據(jù)參數(shù)方程的結(jié)構(gòu)特征,選取適當(dāng)?shù)南麉⒎椒ǎR?jiàn)的消參方法有:代入消參法、加減消參法,平方消參法等,對(duì)于含三角函數(shù)的參數(shù)方程,常利用同角三角函數(shù)關(guān)系式消參如sin2θ+cos2θ=1等;②將參數(shù)方程化為普通方程時(shí),要注意兩種方程的等價(jià)性,不要增解. 例2在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線(xiàn)過(guò)點(diǎn)的直線(xiàn)(為參數(shù))與曲線(xiàn)相交于點(diǎn)兩點(diǎn). (1)求曲線(xiàn)的平面直角坐標(biāo)系方程和直線(xiàn)的普通方程; (2)若成等比數(shù)列,求實(shí)數(shù)的值. 【答案】(1),;(2). 【解析】 3、利用參數(shù)方程解決問(wèn)題的方法 ①過(guò)定點(diǎn)P0(x0,y0),傾斜角為α的直線(xiàn)參數(shù)方程的標(biāo)準(zhǔn)式為 (t為參數(shù)),t的幾何意義是直線(xiàn)上的點(diǎn)P到點(diǎn)P0(x0,y0)的數(shù)量,即t=|PP0|時(shí)為距離.使用該式時(shí)直線(xiàn)上任意兩點(diǎn)P1、P2對(duì)應(yīng)的參數(shù)分別為t1、t2,則|P1P2|=|t1-t2|,P1P2的中點(diǎn)對(duì)應(yīng)的參數(shù)為(t1+t2). ②對(duì)于形如 (t為參數(shù)),當(dāng)a2+b2≠1時(shí),應(yīng)先化為標(biāo)準(zhǔn)形式后才能利用t的幾何意義解題. ③解決直線(xiàn)與圓、圓錐曲線(xiàn)的參數(shù)方程有關(guān)的綜合問(wèn)題時(shí),要注意普通方程與參數(shù)方程的互化公式,主要是通過(guò)互化解決與圓、圓錐曲線(xiàn)上動(dòng)點(diǎn)有關(guān)的問(wèn)題,如最值、范圍等. 例3在極坐標(biāo)系中,已知曲線(xiàn),為曲線(xiàn)上的動(dòng)點(diǎn),定點(diǎn). (1)將曲線(xiàn)的方程化成直角坐標(biāo)方程,并說(shuō)明它是什么曲線(xiàn); (2)求、兩點(diǎn)的最短距離. 【答案】(1)曲線(xiàn)的直角坐標(biāo)方程為:且曲線(xiàn)是以為圓心,為半徑的圓;(2). 【解析】 【練一練提升能力】 1. 在直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,半圓C的極坐標(biāo)方程為, . (Ⅰ)求C的參數(shù)方程; (Ⅱ)設(shè)點(diǎn)D在C上,C在D處的切線(xiàn)與直線(xiàn)垂直,根據(jù)(Ⅰ)中你得到的參數(shù)方程,確定D的坐標(biāo). 【答案】(Ⅰ)是參數(shù),;(Ⅱ) 【解析】(Ⅰ)設(shè)點(diǎn)M是C上任意一點(diǎn),則由可得C的普通方程為:, 即, 所以C的參數(shù)方程為是參數(shù),. (Ⅱ)設(shè)D點(diǎn)坐標(biāo)為,由(Ⅰ)知C是以G(1,0)為圓心,1為半徑的上半圓, 因?yàn)镃在點(diǎn)D處的切線(xiàn)與垂直,所以直線(xiàn)GD與的斜率相同,,, 故D點(diǎn)的直角坐標(biāo)為,即. 2. 已知曲線(xiàn),直線(xiàn):(為參數(shù)). (I)寫(xiě)出曲線(xiàn)的參數(shù)方程,直線(xiàn)的普通方程; (II)過(guò)曲線(xiàn)上任意一點(diǎn)作與夾角為的直線(xiàn),交于點(diǎn),的最大值與最小值. 【答案】(I);(II)最大值為,最小值為. 【解析】 不等式選講 【背一背重點(diǎn)知識(shí)】 1. 三個(gè)正數(shù)的算術(shù)——幾何平均不等式: (1)定理3:如果a,b,c∈ ,那么,當(dāng)且僅當(dāng)時(shí),等號(hào)成立. 即三個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù). (2) 基本不等式的推廣:對(duì)于n個(gè)正數(shù)a1,a2,…,an,它們的算術(shù)平均數(shù)不小于它們的幾何平均數(shù),即,當(dāng)且僅當(dāng)a1=a2=…=an 時(shí),等號(hào)成立. 2. 柯西不等式: (1)二維形式:若a,b,c,d都是實(shí)數(shù),則(a2+b2)(c2+d2)≥ (ac+bd)2,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立. (2)向量形式:設(shè)α、β是兩個(gè)向量,則|αβ|≤|α||β|,當(dāng)且僅當(dāng)β是向量或存在實(shí)數(shù)k使α=kβ時(shí)等號(hào)成立. (3)一般形式:設(shè)a1,a2,a3,…,an,b1,b2,b3,…,bn是實(shí)數(shù),則(a+a+…+a)(b+b+…+b)≥(a1b1+a2b2+…+anbn)2,當(dāng)且僅當(dāng)=0 (i=1,2,…,n)或存在一個(gè)實(shí)數(shù)k,使得 (i=1,2,…,n)時(shí),等號(hào)成立. (4)二維形式的柯西不等式變式:①≥|ac+bd|; ②≥|ac|+|bd|. 3. 排序不等式: (1) 亂序和、反序和與順序和:設(shè)a1,a2,a3,…,an,b1,b2,b3,…,bn∈R,且a1≤a2≤a3≤…≤an,b1≤b2≤b3≤…≤bn,設(shè)c1,c2,c3,…,cn是數(shù)組b1,b2,b3,…,bn的任意一個(gè)排列,則分別將S=a1c1+a2c2+a3c3+…+ancn,S1=a1bn+a2bn-1+a3bn-2+…+anb1,S2=a1b1+a2b2+a3b3+…+anbn稱(chēng)為數(shù)組(a1,a2,a3,…,an)和數(shù)組(b1,b2,b3,…,bn)的亂序和,反序和,與順序和. (2)排序不等式(又稱(chēng)排序原理):設(shè)a1≤a2≤…≤an,b1≤b2≤b3≤…≤bn為兩組實(shí)數(shù),c1,c2,…,cn是b1,b2,…,bn的任一排列,則a1bn+a2bn-1+…+anb1≤a1c1+a2c2+…+ancn≤a1b1+a2b2+…+anbn,當(dāng)且僅當(dāng)a1=a2=…=an或b1=b2=…=bn時(shí),反序和等于亂序和等于順序和. 4. 絕對(duì)值不等式: (1)定理1:如果a,b是實(shí)數(shù),則|a+b|≤|a|+|b|,當(dāng)且僅當(dāng)ab≥0時(shí),等號(hào)成立. (2)定理2:如果a,b,c是實(shí)數(shù),那么|a-c|≤|a-b|+|b-c|,當(dāng)且僅當(dāng) 時(shí),等號(hào)成立. 【講一講提高技能】 1、 絕對(duì)值不等式的解法 (1) |ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:①|(zhì)ax+b|≤c(c>0)-c≤ax+b≤c;②|ax+b|≥c(c>0)ax+b≥c或ax+b≤-c。 (2) 、|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法:①分段討論法:利用絕對(duì)值號(hào)內(nèi)式子對(duì)應(yīng)方程的根,將數(shù)軸分為(-∞,a],(a,b],(b,+∞)(此處設(shè)ac(c>0)的幾何意義:數(shù)軸上到點(diǎn)x1=a和x2=b的距離之和大于c的全體,|x-a|+|x-b|≥|x-a-(x-b)|=|a-b|;③圖象法:作出函數(shù)y1=|x-a|+|x-b|和y2=c的圖象,結(jié)合圖象求解.注意求解的過(guò)程中應(yīng)同解變形 . 例1設(shè) (Ⅰ)當(dāng),解不等式; (Ⅱ)當(dāng)時(shí),若,使得不等式成立,求實(shí)數(shù)的取值范圍. 【答案】(Ⅰ);(Ⅱ) . 【解析】 絕對(duì)值不等式的證明 含絕對(duì)值不等式的證明題主要分兩類(lèi):一類(lèi)是比較簡(jiǎn)單的不等式,往往可通過(guò)公式法、平方法、換元法等去掉絕對(duì)值轉(zhuǎn)化為常見(jiàn)的不等式證明題,或利用絕對(duì)值三角不等式性質(zhì)定理: ||a|-|b||≤|ab|≤|a|+|b|,通過(guò)適當(dāng)?shù)奶怼⒉痦?xiàng)證明;另一類(lèi)是綜合性較強(qiáng)的函數(shù)型含絕對(duì)值的不等式,往往可考慮利用一般情況成立則特殊情況也成立的思想,或利用一元二次方程的根的分布等方法來(lái)證明. 例2已知函數(shù). (1)當(dāng)時(shí),求不等式的解集; (2)若的解集包含,求實(shí)數(shù)的取值范圍. 【答案】(1);(2). 【解析】 3、不等式證明的基本方法:比較法、綜合法、分析法、反證法、放縮法。 例3已知,證明 分析:直接利用算術(shù)-幾何平均不等式可得,,兩式相乘即得要證不等式. 【解析】∵,∴,, ∴. 【練一練提升能力】 1. 已知,函數(shù)的最小值為4. (Ⅰ)求的值; (Ⅱ)求的最小值. 【答案】(Ⅰ);(Ⅱ). 【解析】 2.設(shè)a,b,c均為正數(shù),且a+b+c=1,證明: (1)++≤; (2). 【答案】(略) 【解析】(1)由, 得. 由題設(shè)得,即. 所以3()1,即. (2)因?yàn)?,,? 故≥2(a+b+c), 即≥a+b+c. 所以≥1. 解答題(共10題) 1.如圖,是的一條切線(xiàn),切點(diǎn)為B,ADE,CFD和CGE都是的割線(xiàn),. (1)證明:; (2)證明: 【答案】(1)證明略;(2)證明略. 【解析】 (2)由(1)知, 又 ,∴ ,∴ 又四邊形DEGF為圓內(nèi)接四邊形,∴ , ∴,∴ . 2.如圖,已知切⊙于點(diǎn)E,割線(xiàn)PBA交⊙于A(yíng)、B兩點(diǎn),∠APE的平分線(xiàn)和AE、BE分別交于點(diǎn)C、D. 求證:(Ⅰ); (Ⅱ). 【解析】 3、如圖,垂直于于,垂直于,連接.證明: (I) (II) 【解析】 4、已知曲線(xiàn)的參數(shù)方程為(其中為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為. (1)分別寫(xiě)出曲線(xiàn)與曲線(xiàn)的普通方程; (2)若曲線(xiàn)與曲線(xiàn)交于兩點(diǎn),求線(xiàn)段的長(zhǎng). 【答案】(1),;(2). 【解析】 試題分析:(1)利用同角三角函數(shù)關(guān)系消去參數(shù),得曲線(xiàn),利用,得曲線(xiàn); (2)把曲線(xiàn)和曲線(xiàn)聯(lián)立消去得,結(jié)合弦長(zhǎng)公式即可求得弦的長(zhǎng). 試題解析: (1)曲線(xiàn), 曲線(xiàn). (2)聯(lián)立,得, 設(shè),則,, 于是. 故線(xiàn)段的長(zhǎng)為. 5、已知?jiǎng)狱c(diǎn)都在曲線(xiàn)為參數(shù)上,對(duì)應(yīng)參數(shù)分別為與,為的中點(diǎn). (Ⅰ)求的軌跡的參數(shù)方程; (Ⅱ)將到坐標(biāo)原點(diǎn)的距離表示為的函數(shù),并判斷的軌跡是否過(guò)坐標(biāo)原點(diǎn). 【解析】 6、在平面直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為(為參數(shù)).在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)中,圓的方程為. (1)寫(xiě)出直線(xiàn)的普通方程和圓的直角坐標(biāo)方程; (2)若點(diǎn)坐標(biāo)為,圓與直線(xiàn)交于兩點(diǎn),求的值. 【答案】(1),;(2) 【解析】 試題分析:(1)將參數(shù)方程轉(zhuǎn)化為直角坐標(biāo)系下的普通方程,需要根據(jù)參數(shù)方程的結(jié)構(gòu)特征,選取恰當(dāng)?shù)南麉⒎椒?,常?jiàn)的消參方法有:代入消參法、加減消參法、平方消參法;(2)將參數(shù)方程轉(zhuǎn)化為普通方程時(shí),要注意兩種方程的等價(jià)性,不要增解、漏解,若有范圍限制,要標(biāo)出的取值范圍;(2)直角坐標(biāo)方程化為極坐標(biāo)方程,只需把公式及直接代入并化簡(jiǎn)即可;而極坐標(biāo)方程化為極坐標(biāo)方程要通過(guò)變形,構(gòu)造形如,,的形式,進(jìn)行整體代換,其中方程的兩邊同乘以(或同除以)及方程的兩邊平方是常用的變形方法. 7、設(shè)不等式的解集為,且,. (1)求的值; (2)求函數(shù)的最小值. 【解析】(Ⅰ)因?yàn)?且,所以,且 解得,又因?yàn)?所以 (Ⅱ)因?yàn)? 當(dāng)且僅當(dāng),即時(shí)取得等號(hào),所以的最小值為 8、已知函數(shù),,. (1)當(dāng)時(shí),解不等式: ; (2)若且,證明:,并求在等號(hào)成立時(shí)的取值范圍. 【解析】(1)因?yàn)? 9、設(shè)函數(shù). (1)當(dāng)時(shí),解不等式; (2)若的解集為,,求證:. 【答案】(1);(2)見(jiàn)解析. 【解析】 試題分析:(1)當(dāng)時(shí),對(duì)原函數(shù)進(jìn)行分情況解不等式,得到原不等式的解集;(2)根據(jù)的解集為,得到,所以,所以, 利用均值不等式得到,結(jié)論得證. 10、已知函數(shù),其中. (I)當(dāng)時(shí),求不等式的解集; (II)已知關(guān)于的不等式的解集為,求的值. 【解析】當(dāng)時(shí),。,即。 當(dāng)時(shí),,即,解得; 當(dāng)時(shí),,即,不成立; 當(dāng)時(shí),,即,解得。 所以不等式的解集為。…………………………4分 (Ⅱ)解:記,則。- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高考數(shù)學(xué) 中等生百日捷進(jìn)提升系列綜合提升篇專(zhuān)題07 選講內(nèi)容含解析 2019 2020 年高 數(shù)學(xué) 中等 百日 提升 系列 綜合 專(zhuān)題 07 內(nèi)容 解析
鏈接地址:http://www.3dchina-expo.com/p-2835387.html