2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教A版.doc
《2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教A版.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教A版.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 文 新人教A版 說明:1.測(cè)試時(shí)間:120分鐘 總分:150分 2.客觀題涂在答題紙上,主觀題答在答題紙的相應(yīng)位置上 第I卷(60分) 一、選擇題:(本大題共12小題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.) 1.直線的傾斜角的取值范圍是( ) A. B. C. D. 2. 已知集合,,則 ( ) A.{|0<<} B.{|<<1} C.{|0<<1} D.{|1<<2} 3. 下列有關(guān)命題的說法正確的是 ( ) A.命題“若,則”的否命題為:“若,則”. B.“” 是“”的必要不充分條件. C.命題“若,則”的逆否命題為真命題. D.命題“使得”的否定是:“均有”. 4. 已知各項(xiàng)均為正數(shù)的等比數(shù)列中,成等差數(shù)列,則( ) A. 27 B.3 C. 或3 D.1或27 5. 函數(shù)的定義域?yàn)?,則函數(shù)的定義域?yàn)? ( ) A. B. C. D. 6. 已知,則 ( ) A. B. C. D. 7. 已知x,y滿足記目標(biāo)函數(shù)的最小值為1,最大值為7,則的值分別為 ( ) A. -1,-2 B. -2,-1 C. 1,2 D. 1,-2 8.已知等比數(shù)列滿足>0,=1,2,…,且,則當(dāng)≥1時(shí), = ( ) A.n(2n-1) B.(n+1)2 C.n2 D.(n-1)2 9.已知x∈,且函數(shù)f(x)=的最小值為b,若函數(shù)g(x)=,則不等式g(x)≤1的解集為 ( ) A. B. C. D. 10.設(shè) F1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點(diǎn),過F1的直線與的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為( ) A. B. C.2 D. 11.若曲線f(x,y)=0上兩個(gè)不同點(diǎn)處的切線重合,則稱這條切線為曲線f(x,y)=0的“自公切線”.下列方程:①x2-y2=1;②y=x2-|x|;③y=3sin x+4cos x;④|x|+1=對(duì)應(yīng)的曲線中存在“自公切線”的有 ( ) A.①② B.②③ C.①④ D.③④ 12.函數(shù),在定義域上表示的曲線過原點(diǎn),且在處的切線斜率均為.有以下命題: ①是奇函數(shù);②若內(nèi)遞減,則的最大值為4;③的最大值為M,最小值為m,則;④若對(duì)恒成立,則的最大值為2.其中正確命題的個(gè)數(shù)為 ( ) A. 1個(gè) B.2個(gè) C.3個(gè) D.4個(gè) 第Ⅱ卷(90分) 二、填空題:本大題共4題,每小題5分,共20分. 13.. 若函數(shù)在上可導(dǎo),,則 . 14. 若且,則的最小值為 . 15.拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F與雙曲線的右焦點(diǎn)重合,過點(diǎn)P(2,0)且斜率為1的直線與拋物線C交于A,B兩點(diǎn),則弦AB的中點(diǎn)到拋物線準(zhǔn)線的距離為_______ 16.對(duì)于實(shí)數(shù)a,b,定義運(yùn)算:設(shè),且關(guān)于x的方程恰有三個(gè)互不相等的實(shí)數(shù)根,則的取值范圍是___________ 三、解答題:本大題共六個(gè)大題,滿分70;解答應(yīng)寫出文字說明,證明過程或演算步驟. 17.(本題滿分10分) (1)已知,且,求的值; (2)已知為第二象限角,且,求的值. 18. (本題滿分12分)在銳角三角形ABC中,a、b、c分別是角A、B、C的對(duì)邊, 且. (Ⅰ)求角的大小; (Ⅱ)若的最大值. 19.(本題滿分12分) 設(shè)數(shù)列是等差數(shù)列,數(shù)列的前項(xiàng)和滿足且 (Ⅰ)求數(shù)列和的通項(xiàng)公式: (Ⅱ)設(shè),設(shè)為的前n項(xiàng)和,求. 20.(本題滿分12分) 設(shè)橢圓C:的離心率,右焦點(diǎn)到直線的距離,O為坐標(biāo)原點(diǎn).(1)求橢圓C的方程; (2)過點(diǎn)O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點(diǎn),證明:點(diǎn)O到直線AB的距離為定值,并求弦AB長(zhǎng)度的最小值。 21.(本題滿分12分) 已知函數(shù),在點(diǎn)(1,f(1))處的切線方程為y+2=0. (1)求函數(shù)f(x)解析式; (2)若對(duì)于區(qū)間[-2,2]上的任意兩個(gè)自變量都有,求實(shí)數(shù)c的最小值; (3)若過點(diǎn)M(2,m)(m2)可作曲線y=f(x)的三條切線,求實(shí)數(shù)m的取值范圍; 22.(本題滿分12分) 已知函數(shù)(均為正常數(shù)),設(shè)函數(shù)在處有極值. (1)若對(duì)任意的,不等式總成立,求實(shí)數(shù)的取值范圍; (2)若函數(shù)在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍. 沈陽(yáng)二中xx——xx上學(xué)期期中 高三(15屆)文科數(shù)學(xué)試題答案 一. 選擇題:1. B 2.B 3.C 4.A 5.D 6.C 7.A 8.A 9.D 10.A 11.B 12.B 二. 填空題:13.-4 14. 15..11 16. 三、解答題: 17. 18.解:(Ⅰ)由a-2csin A=0及正弦定理, 得sin A-2sin Csin A=0(sin A≠0),(1分) ∴sin C=,(4分)∵△ABC是銳角三角形, ∴C= (6分) (Ⅱ)∵c=2,C=,由余弦定理,a2+b2-2abcos =4, 即a2+b2-ab=4 (8分) ∴(a+b)2=4+3ab≤4+32,即(a+b)2≤16,(10分) ∴a+b≤4,當(dāng)且僅當(dāng)a=b=2取“=”(11分) 故a+b的最大值是4.(12分) 19.解: (1) , (3分) . (3分) (2).(12分) 20. (1) (2)設(shè)A,當(dāng)直線AB的斜率不存在時(shí),,又,解得,即O到直線AB的距離,當(dāng)直線的斜率存在時(shí),直線AB的方程為y=kx+m,與橢圓聯(lián)立消去y得,,即,整理得O到直線AB的距離當(dāng)且僅當(dāng)OA=OB時(shí)取“=”有得,即弦AB的長(zhǎng)度的最小值是 21. (1)由已知得,根據(jù)題意,得即解得 (2)由(1)知?jiǎng)t令又f(-1)=2,f(1)=-2,f(-2)=-2,f(2)=2, (3)設(shè)切點(diǎn)為(,則切線的斜率為則有,即過點(diǎn)M(2,m)可作曲線y=f(x)的三條切線,方程有三個(gè)不同的實(shí)數(shù)解,有三個(gè)不同的零點(diǎn),令解得x=0,x=2, 22.解:∵,∴,由題意,得,解得.----2分 (1)不等式等價(jià)于對(duì)于一切恒成立.---- 4分 記,則 ----5分 ∵,∴,∴, ∴,從而在上是減函數(shù). ∴,于是.---- 6分 (2),由,得,即.---- 7分 ∵函數(shù)在區(qū)間上單調(diào)遞增, ∴, 則有----9分,即, ∴時(shí), ---- 12分- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年高三數(shù)學(xué)上學(xué)期期中試題 新人教A版 2019 2020 年高 數(shù)學(xué) 上學(xué) 期期 試題 新人
鏈接地址:http://www.3dchina-expo.com/p-2868459.html