2019高中數(shù)學 第四章 圓與方程 4.1 圓的方程(第1課時)圓的標準方程課下能力提升(含解析)新人教A版必修2.doc
《2019高中數(shù)學 第四章 圓與方程 4.1 圓的方程(第1課時)圓的標準方程課下能力提升(含解析)新人教A版必修2.doc》由會員分享,可在線閱讀,更多相關《2019高中數(shù)學 第四章 圓與方程 4.1 圓的方程(第1課時)圓的標準方程課下能力提升(含解析)新人教A版必修2.doc(5頁珍藏版)》請在裝配圖網(wǎng)上搜索。
課下能力提升(二十二) [學業(yè)水平達標練] 題組1 圓的標準方程 1.圓(x-2)2+(y+3)2=2的圓心和半徑分別是( ) A.(-2,3),1 B.(2,-3),3 C.(-2,3), D.(2,-3), 2.(2016洛陽高一檢測)圓心為(0,4),且過點(3,0)的圓的方程為( ) A.x2+(y-4)2=25 B.x2+(y+4)2=25 C.(x-4)2+y2=25 D.(x+4)2+y2=25 3.(2016達州高一檢測)△ABC的三個頂點的坐標分別為A(1,0),B(3,0),C(3,4),則△ABC的外接圓方程是 ( ) A.(x-2)2+(y-2)2=20 B.(x-2)2+(y-2)2=10 C.(x-2)2+(y-2)2=5 D.(x-2)2+(y-2)2= 4.經(jīng)過原點,圓心在x軸的負半軸上,半徑為2的圓的方程是________. 5.求過點A(1,2)和B(1,10)且與直線x-2y-1=0相切的圓的方程. 題組2 點與圓的位置關系 6.點P(m2,5)與圓x2+y2=24的位置關系是( ) A.在圓外 B.在圓內(nèi) C.在圓上 D.不確定 7.點(5+1,)在圓(x-1)2+y2=26的內(nèi)部,則a的取值范圍是________. 8.已知圓M的圓心坐標為(3,4),且A(-1,1),B(1,0),C(-2,3)三點一個在圓M內(nèi),一個在圓M上,一個在圓M外,則圓M的方程為________. 題組3 與圓有關的最值問題 9.設P是圓(x-3)2+(y+1)2=4上的動點,Q是直線x=-3上的動點,則|PQ|的最小值為( ) A.6 B.4 C.3 D.2 10.已知點P(x,y)在圓x2+y2=1上,則的最大值為________. [能力提升綜合練] 1.與圓(x-3)2+(y+2)2=4關于直線x=-1對稱的圓的方程為( ) A.(x+5)2+(y+2)2=4 B.(x-3)2+(y+2)2=4 C.(x-5)2+(y+2)2=4 D.(x-3)2+y2=4 2.圓心為C(-1,2),且一條直徑的兩個端點落在兩坐標軸上的圓的方程是( ) A.(x-1)2+(y+2)2=5 B.(x-1)2+(y+2)2=20 C.(x+1)2+(y-2)2=5 D.(x+1)2+(y-2)2=20 3.方程y=表示的曲線是( ) A.一條射線 B.一個圓 C.兩條射線 D.半個圓 4.當a為任意實數(shù)時,直線(a-1)x-y+a+1=0恒過定點C,則以C為圓心,為半徑的圓的方程為( ) A.(x-1)2+(y+2)2=5 B.(x+1)2+(y+2)2=5 C.(x+1)2+(y-2)2=5 D.(x-1)2+(y-2)2=5 5.(2016合肥高一檢測)圓心為直線x-y+2=0與直線2x+y-8=0的交點,且過原點的圓的標準方程是________. 6.若圓心在x軸上,半徑為的圓C位于y軸左側(cè),且與直線x+2y=0相切,則圓C的方程是________. 7.已知某圓圓心在x軸上,半徑長為5,且截y軸所得線段長為8,求該圓的標準方程. 8.(1)如果實數(shù)x,y滿足(x-2)2+y2=3,求的最大值和最小值; (2)已知實數(shù)x,y滿足方程x2+(y-1)2=,求的取值范圍. 答案 [學業(yè)水平達標練] 題組1 圓的標準方程 1.解析:選D 由圓的標準方程可得圓心坐標為(2,-3),半徑為. 2.解析:選A 由題意,圓的半徑r==5,則圓的方程為x2+(y-4)2=25. 3.解析:選C 易知△ABC是直角三角形,∠B=90,所以圓心是斜邊AC的中點(2,2),半徑是斜邊長的一半,即r=,所以外接圓的方程為(x-2)2+(y-2)2=5. 4.解析:圓心是(-2,0),半徑是2,所以圓的方程是(x+2)2+y2=4. 答案:(x+2)2+y2=4 5.解:圓心在線段AB的垂直平分線y=6上,設圓心為(a,6),半徑為r,則圓的方程為(x-a)2+(y-6)2=r2. 將點(1,10)代入得(1-a)2+(10-6)2=r2, ① 而r=,代入①,得(a-1)2+16=, 解得a=3,r=2或a=-7,r=4. 故所求圓的方程為(x-3)2+(y-6)2=20或(x+7)2+(y-6)2=80. 題組2 點與圓的位置關系 6.解析:選A 把點P(m2,5)代入圓的方程x2+y2=24得m4+25>24,故點P在圓外. 7.解析:由于點在圓的內(nèi)部,所以(5+1-1)2+()2<26,即26a<26,又a≥0,解得0≤a<1. 答案:[0,1) 8.解析:∵|MA|==5, |MB|==2, |MC|==, ∴|MB|<|MA|<|MC|, ∴點B在圓M內(nèi),點A在圓M上,點C在圓M外, ∴圓的半徑r=|MA|=5, ∴圓M的方程為(x-3)2+(y-4)2=25. 答案:(x-3)2+(y-4)2=25 題組3 與圓有關的最值問題 9.解析:選B 由題意,知|PQ|的最小值即為圓心到直線x=-3的距離減去半徑長,即|PQ|的最小值為6-2=4. 10.解析:的幾何意義是圓上的點P(x,y)到點(1,1)的距離,因此最大值為+1. 答案:1+ [能力提升綜合練] 1.解析:選A 已知圓的圓心(3,-2)關于直線x=-1的對稱點為(-5,-2), ∴所求圓的方程為(x+5)2+(y+2)2=4. 2.解析:選C 因為直徑的兩個端點在兩坐標軸上,所以該圓一定過原點,所以半徑r==,又圓心為C(-1,2),故圓的方程為(x+1)2+(y-2)2=5,故選C. 3.解析:選D y=可化為x2+y2=9(y≥0),故表示的曲線為圓x2+y2=9位于x軸及其上方的半個圓. 4.解析:選C 直線方程變?yōu)?x+1)a-x-y+1=0.由得 ∴C(-1,2),∴所求圓的方程為(x+1)2+(y-2)2=5. 5.解析:由可得x=2,y=4, 即圓心為(2,4),從而r==2, 故圓的標準方程為(x-2)2+(y-4)2=20. 答案:(x-2)2+(y-4)2=20 6. 解析:如圖所示,設圓心C(a,0),則圓心C到直線x+2y=0的距離為=,解得a=-5,a=5(舍去), ∴圓心是(-5,0).故圓的方程是(x+5)2+y2=5. 答案:(x+5)2+y2=5 7. 解:法一:如圖所示,由題設|AC|=r=5,|AB|=8, ∴|AO|=4.在Rt△AOC中, |OC|= = =3. 設點C坐標為(a,0), 則|OC|=|a|=3,∴a=3. ∴所求圓的方程為(x+3)2+y2=25或(x-3)2+y2=25. 法二:由題意設所求圓的方程為(x-a)2+y2=25. ∵圓截y軸線段長為8,∴圓過點A(0,4). 代入方程得a2+16=25,∴a=3. ∴所求圓的方程為(x+3)2+y2=25或(x-3)2+y2=25. 8.解:(1)法一:如圖,當過原點的直線l與圓(x-2)2+y2=3相切于上方時最大,過圓心A(2,0)作切線l的垂線交于B, 在Rt△ABO中,OA=2,AB=. ∴切線l的傾斜角為60,∴的最大值為. 同理可得的最小值為-. 法二:令=n,則y=nx與(x-2)2+y2=3聯(lián)立, 消去y得(1+n2)x2-4x+1=0, Δ=(-4)2-4(1+n2)≥0,即n2≤3, ∴-≤n≤,即的最大值、最小值分別為、-. (2)可以看成圓上的點P(x,y)到A(2,3)的距離.圓心C(0,1)到A(2,3)的距離為d==2. 由圖可知,圓上的點P(x,y)到A(2,3)的距離的范圍是. 即 的取值范圍是2-,2+.- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關 鍵 詞:
- 2019高中數(shù)學 第四章 圓與方程 4.1 圓的方程第1課時圓的標準方程課下能力提升含解析新人教A版必修2 2019 高中數(shù)學 第四 方程 課時 標準 能力 提升 解析 新人 必修
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-3896219.html