《(浙江專版)2020屆高考數(shù)學一輪復(fù)習 滾動檢測四(1-7章)(含解析).docx》由會員分享,可在線閱讀,更多相關(guān)《(浙江專版)2020屆高考數(shù)學一輪復(fù)習 滾動檢測四(1-7章)(含解析).docx(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
滾動檢測四(1~7章)
(時間:120分鐘 滿分:150分)
第Ⅰ卷(選擇題 共40分)
一、選擇題(本大題共10小題,每小題4分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的)
1.已知集合A={x|0
0,
解得-30,ω>0,-π<φ<0)的部分圖象如圖所示,為了得到g(x)=Asinωx的圖象,只需將函數(shù)y=f(x)的圖象( )
A.向左平移個單位長度
B.向左平移個單位長度
C.向右平移個單位長度
D.向右平移個單位長度
答案 B
解析 A=2,=,T=π,ω=2,2+φ=2kπ,k∈Z,
又-π<φ<0,解得φ=-,
所以f(x)=2cos,
g(x)=2sin2x=2cos,
2x-=2x-+=2-,
根據(jù)平移原則,可知函數(shù)y=f(x)的圖象向左平移個單位長度.故選B.
5.若e1,e2是夾角為60的兩個單位向量,則向量a=e1+e2,b=-e1+2e2的夾角為( )
A.30B.60C.90D.120
答案 B
解析 由已知得,e1e2=,所以(e1+e2)(-e1+2e2)=,|e1+e2|=,|-e1+2e2|=,設(shè)向量a=e1+e2,b=-e1+2e2的夾角為α,則cosα====,
又α∈[0,π],∴α=.
6.△ABC的外接圓的圓心為O,半徑為1,若+=2,且||=||,則向量在向量方向上的投影為( )
A.B.C.3D.-
答案 A
解析 如圖,取BC邊的中點D,連接AD,則+=2=2,
∴O和D重合,O是△ABC外接圓圓心,∵||=||,
∴∠BAC=90,∠BOA=120,∠ABO=30.
又||=||=1;
∴在△AOB中由余弦定理得
||2=||2+||2-2|O|||cos∠AOB=1+1-2=3,
||=,∵∠ABO=30;
∴向量在向量方向上的投影為||cos∠ABO=.
7.已知f(x)是定義在R上的奇函數(shù),且當x∈(-∞,0)時,不等式f(x)+xf′(x)<0成立,若a=πf(π), b=(-2)f(-2),c=f(1),則a,b,c的大小關(guān)系是( )
A.a(chǎn)>b>cB.c>b>aC.c>a>bD.a(chǎn)>c>b
答案 A
解析 令F(x)=xf(x),F(xiàn)′(x)=f(x)+xf′(x),當x<0時,F(xiàn)(x)在(-∞,0)上單調(diào)遞減.又f(x)是奇函數(shù),F(xiàn)(x)是偶函數(shù),所以F(x)在(0,+∞)上單調(diào)遞增,所以F(π)>F(-2)>F(1),即πf(π)>(-2)f(-2)>f(1),故選A.
8.已知{an}是等差數(shù)列,其公差為非零常數(shù)d,前n項和為Sn,設(shè)數(shù)列的前n項和為Tn,當且僅當n=6時,Tn有最大值,則的取值范圍是( )
A.
B.(-3,+∞)
C.
D.(-∞,-3)∪
答案 C
解析 ∵{an}是等差數(shù)列,其公差為非零常數(shù)d,前n項和為Sn,∴=n+,
∵數(shù)列的前n項和為Tn,當且僅當n=6時,Tn有最大值,∴
解得-3<<-.故選C.
9.對任意的n∈N*,數(shù)列{an}滿足|an-cos2n|≤且|an+sin2n|≤,則an等于( )
A.-sin2n B.sin2n-
C.-cos2n D.cos2n+
答案 A
解析 ∵|an-cos2n|≤且|an+sin2n|≤,
∴cos2n-≤an≤cos2n+,
-sin2n-≤an≤-sin2n+,
即-1+cos2n-≤an≤-1+cos2n+,
∴cos2n-≤an≤cos2n-,
∴an=cos2n-=-sin2n.
10.已知函數(shù)f(x)=設(shè)方程f(x)-=t(t∈R)的四個不等實根從小到大依次為x1,x2,x3,x4,則下列判斷中一定成立的是( )
A.=1 B.14,
結(jié)合圖象可知f(x3)-=f(x4)-,
則結(jié)合f(x)的解析式易得log2(4-x3)+log2(4-x4)
=->0,
即(4-x3)(4-x4)>1,
整理有16-4(x3+x4)+x3x4>1,
即4(x3+x4)<15+x3x4,
由于x3+x4>2,
則8<15+x3x4,
即(-3)(-5)>0,可得>5(舍去),
或<3,即x3x4<9,
故40在x∈(-∞,1]上恒成立,
即a>-x-x-x-…-x在x∈(-∞,1]上恒成立,
設(shè)g(x)=-x-x-x-…-x,
則易得g(x)在x∈(-∞,1]上單調(diào)遞增,
所以g(x)max=g(1)=-,所以a>-.
16.已知實數(shù)a,b,c滿足a2-8a-bc+7=0,b2+c2+bc-6a+6=0,則實數(shù)a的取值范圍是________.
答案 [1,9]
解析 方法一 由a2-8a-bc+7=0,
可得bc=a2-8a+7,
由b2+c2+bc-6a+6=0,
可得b2+c2+bc=6a-6,
所以(b+c)2=b2+c2+bc+bc=6a-6+a2-8a+7=a2-2a+1,即b+c=(a-1),
因此可得b,c為方程x2(a-1)x+a2-8a+7=0的兩實根,
所以Δ=[(a-1)]2-4(a2-8a+7)≥0,
即a2-10a+9≤0,解得1≤a≤9.
方法二 由a2-8a-bc+7=0,可得bc=a2-8a+7,
由b2+c2+bc-6a+6=0,可得b2+c2+bc=6a-6,
所以(b+c)2=b2+c2+bc+bc=6a-6+a2-8a+7=a2-2a+1,
由(b+c)2≥4bc,得a2-2a+1≥4(a2-8a+7),
即a2-10a+9≤0,解得1≤a≤9.
17.以O(shè)為起點作三個不共線的非零向量,,,使=-2,||=4,+=,則=________.
答案 12
解析 方法一 由+=,
平方得=-,即cos∠AOB=-,
因為,不共線,所以0<∠AOB<180,
所以∠AOB=120.
因為=-2,所以C為線段AB的中點.
由+=兩邊同乘以,可得
cos∠AOC+cos∠BOC=1,
即cos∠AOC+cos (120-∠AOC)=1,
可得∠AOC=60,所以O(shè)C為∠AOB的平分線,
所以⊥.
又||=4,所以||=||=2,
所以=(+)=2=12.
方法二 由+=及=-2,
結(jié)合向量加法的平行四邊形法則,得OC為∠AOB的平分線,C為AB的中點,所以||=||=4,
||=||=2,
所以=(+)=2=12.
三、解答題(本大題共5小題,共74分.解答應(yīng)寫出文字說明,證明過程或演算步驟)
18.(14分)已知A={x|x2-2x-3<0},B={x|x2-5x+6>0}.
(1)求A∩B;
(2)若不等式x2+ax+b<0的解集是A∩B,求ax2+x-b<0的解集.
解 (1)由題意知A={x|x2-2x-3<0}={x|-10}={x|x<2或x>3},
∴A∩B={x|-12.
∴ax2+x-b<0的解集為{x|x<-1或x>2}.
19.(15分)函數(shù)f(x)=sin2ωx-cos2ωx+2sinωxcosωx+λ的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù)且ω∈.
(1)求f(x)的最小正周期;
(2)若函數(shù)f(x)的圖象經(jīng)過點,求f(x)在上的值域.
解 (1)f(x)=sin2ωx-cos2ωx+2sinωxcosωx+λ
=sin2ωx-cos2ωx+λ
=2sin+λ,
由已知,f(x)的圖象關(guān)于直線x=π對稱,
當x=π時,2ωπ-=kπ+(k∈Z),解得ω=+,
又ω∈∴ω=,∴f(x)=2sin+λ,∴T=.
(2)由已知f=2sin+λ=+λ=0,∴λ=-.
∵x∈,∴x-∈,
∴2sin-∈[-1-,2-],
∴f(x)在上的值域是[-1-,2-].
20.(15分)(2019金華模擬)已知等差數(shù)列{an}中,2a2+a3+a5=20,且前10項和S10=100.
(1)求數(shù)列{an}的通項公式;
(2)若bn=,求數(shù)列{bn}的前n項和Tn.
解 (1)設(shè)等差數(shù)列{an}的首項為a1,公差為d.
由已知得
解得
所以數(shù)列{an}的通項公式為an=1+2(n-1)=2n-1,n∈N*.
(2)bn==,
所以Tn=
==,n∈N*.
21.(15分)在△ABC中,角A,B,C所對的邊分別為a,b,c,且b2+c2=bc+a2.
(1)求A的大小;
(2)若a=,求b+c的最大值.
解 (1)b2+c2=bc+a2,即b2+c2-a2=bc,
由余弦定理得cosA==,
∵A∈(0,π),∴A=.
(2)∵a=,∴b2+c2=bc+3,即(b+c)2-3=3bc,
∵bc≤2,∴(b+c)2-3≤,
∴(b+c)2≤12,
∴b+c≤2(當且僅當b=c=時取等號).
∴b+c的最大值為2.
22.(15分)已知函數(shù)f(x)=,其中a,b,c∈R.
(1)若b=c=1,且當x≥0時,f(x)≥1總成立,求實數(shù)a的取值范圍;
(2)若a>0,b=0,c=1,f(x)存在兩個極值點x1,x2,求證:e0,則f′(x)=
=.
當0時,f(x)在上為減函數(shù),在上為增函數(shù),f(x)min0,因此a>1.
令f′(x)=0,因此極值點x1,x2為方程ax2-2ax+1=0的兩個根,
又f(x1)=,f(x2)=,
注意到ax-2axi+1=0,i=1,2,
f(x1)=,f(x2)=,x1+x2=2,x1x2=,
所以f(x1)+f(x2)=
=
易知x1>0,x2>0,
注意到e,
因此f(x1)+f(x2)>e,
又<<,
因此e
下載提示(請認真閱讀)
- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
文檔包含非法信息?點此舉報后獲取現(xiàn)金獎勵!
下載文檔到電腦,查找使用更方便
9.9
積分
- 配套講稿:
如PPT文件的首頁顯示word圖標,表示該PPT已包含配套word講稿。雙擊word圖標可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
-
浙江專版2020屆高考數(shù)學一輪復(fù)習
滾動檢測四1-7章含解析
浙江
專版
2020
高考
數(shù)學
一輪
復(fù)習
滾動
檢測
解析
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權(quán),請勿作他用。
鏈接地址:http://www.3dchina-expo.com/p-3919654.html