2018屆高考數(shù)學中檔大題規(guī)范練(第02期)(打包10套)理.zip
2018屆高考數(shù)學中檔大題規(guī)范練(第02期)(打包10套)理.zip,2018,高考,數(shù)學,中檔,規(guī)范,02,打包,10
專題2.2 中檔大題規(guī)范練02(三角 概率 立體幾何 選講)
類型
試 題 亮 點
解題方法/思想/素養(yǎng)
三角大題
余弦定理和面積公式的應用
正弦定理解三角形的個數(shù)問題
三角形面積最值問題
數(shù)形結合思想解三角形個數(shù)
三角形面積公式的應用:邊化角,統(tǒng)一角求最值
概率大題
頻率分布直方圖求中位數(shù)和均值
超幾何分布的應用
用頻率分布直方圖估計總體的思想
超幾何分布模型的應用
立體幾何
面面垂直的判定定理
椎體體積的求解
線面角的求解
空間向量法求解線面角
椎體的體積公式
選講1(極坐標參數(shù)方程)
直線與圓的位置關系
直線的參數(shù)方程的應用
理解直線參數(shù)的集合意義,并會求解線段的長度問題,理解參數(shù)正負的意義
選講2(不等式)
解含兩個絕對值的不等式
解含絕對值的恒成立問題
解絕對值不等式的分段討論思想
不等式恒成立的常用方法:參變分離
1.三角大題
已知的內角的對邊分別為其面積為,且.
(Ⅰ)求角;
(II)若,當有且只有一解時,求實數(shù)的范圍及的最大值.
【答案】(Ⅰ).(Ⅱ).
(Ⅱ)由己知,當有且只有一解時,
或,所以;
當時,為直角三角形,
當時,
由正弦定理,
,
所以,當時,
綜上所述,.
點睛:本題在轉化有且只有一解時,容易漏掉m=2這一種情況.此時要通過正弦定理和正弦函數(shù)的圖像分析,不能死記硬背.先由正弦定理得再畫正弦函數(shù)的圖像得到或.
2.概率大題
某大型商場去年國慶期間累計生成萬張購物單,從中隨機抽出張,對每單消費金額進行統(tǒng)計得到下表:
消費金額(單位:元)
購物單張數(shù)
25
25
30
由于工作人員失誤,后兩欄數(shù)據(jù)無法辨識,但當時記錄表明,根據(jù)由以上數(shù)據(jù)繪制成的頻率分布直方圖所估計出的每單消費額的中位數(shù)與平均數(shù)恰好相等.用頻率估計概率,完成下列問題:
(1)估計去年國慶期間該商場累計生成的購物單中,單筆消費額超過元的概率;
(2)為鼓勵顧客消費,該商場計劃在今年國慶期間進行促銷活動,凡單筆消費超過元者,可抽獎一次.抽獎規(guī)則為:從裝有大小材質完全相同的個紅球和個黑球的不透明口袋中,隨機摸出個小球,并記錄兩種顏色小球的數(shù)量差的絕對值,當時,消費者可分別獲得價值元、元和元的購物券.求參與抽獎的消費者獲得購物券的價值的數(shù)學期望.
【答案】(1) ;(2)見解析.
(2)根據(jù)題意,,.
設抽獎顧客獲得的購物券價值為,則的分布列為
4
2
0
500
200
100
故(元).
點睛:本題主要考查頻率分布直方圖和隨機變量的分布列和數(shù)學期望等知識,考查學生的分析能力和計算能力,屬于中檔題.
3.立體幾何
如圖,在四棱錐.
(1)當PB=2時,證明:平面平面ABCD.
(2)當四棱錐的體積為,且二面角為鈍角時,求直線PA與平面PCD所成角的正弦值.
【答案】(1)見解析.
(2).
(2)解:如圖,取的中點,連接,,
平面,所以平面,因為平面,所以平面平面,所以過點作平面,垂足一定落在平面與平面的交線上.
∵四棱錐的體積為,
∴,
∴.
∵
∴
以為坐標原點,所在直線為軸、軸,在平面內過點作垂直于平面的直線為軸,建立空間直角坐標系.由題意可知,故
,設平面的法向量為,則,即,令,則,所以.
設直線與平面所成的角為,則.
故直線與平面所成角的正弦值為.
點睛:本題主要考查的知識點是面面垂直的判定,直線與平面所成的角.面面垂直的證明,往往利用線面垂直判定定理;解決有關線面角的問題,一般利用空間向量數(shù)量積進行處理比較方便,先根據(jù)條件建立空間直角坐標系,設立各點坐標,利用方程組解出面的法向量,再根據(jù)向量數(shù)量積求出直線向量與法向量夾角余弦值.
4.選講1(極坐標參數(shù)方程)
以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,已知直線的極坐標方程是,圓的參數(shù)方程為(為參數(shù),).
(1)若直線與圓有公共點,求實數(shù)的取值范圍;
(2)當時,過點且與直線平行的直線交圓于兩點,求的值.
【答案】(1)(2)
詳解:(1)由,
得,
即,
故直線的直角坐標方程為.
由
得
所以圓的普通方程為.
若直線與圓有公共點,則圓心到直線的距離,即,
故實數(shù)的取值范圍為.
5.選講2(不等式)
已知函數(shù).
(1)當,解不等式;
(2)若,且當時,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)(2)
(2),即,又且
所以,且
所以即
令,則,
所以時, ,
所以,解得,
所以實數(shù)的取值范圍是.
9
收藏
編號:4387442
類型:共享資源
大?。?span id="kywiwiy4em" class="font-tahoma">9.40MB
格式:ZIP
上傳時間:2020-01-06
30
積分
- 關 鍵 詞:
-
2018
高考
數(shù)學
中檔
規(guī)范
02
打包
10
- 資源描述:
-
2018屆高考數(shù)學中檔大題規(guī)范練(第02期)(打包10套)理.zip,2018,高考,數(shù)學,中檔,規(guī)范,02,打包,10
展開閱讀全文
- 溫馨提示:
1: 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
2: 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
3.本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
5. 裝配圖網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
裝配圖網(wǎng)所有資源均是用戶自行上傳分享,僅供網(wǎng)友學習交流,未經(jīng)上傳用戶書面授權,請勿作他用。