(新課標(biāo))2018-2019學(xué)年高考物理 1.2.1 行星的運動學(xué)案.doc
《(新課標(biāo))2018-2019學(xué)年高考物理 1.2.1 行星的運動學(xué)案.doc》由會員分享,可在線閱讀,更多相關(guān)《(新課標(biāo))2018-2019學(xué)年高考物理 1.2.1 行星的運動學(xué)案.doc(13頁珍藏版)》請在裝配圖網(wǎng)上搜索。
1.2.1 行星的運動 學(xué)習(xí)目標(biāo) 核心凝煉 1.了解人類對行星運動規(guī)律的認識歷程。 2個學(xué)說——地心說、日心說 3個定律——開普勒第一、二、三定律 2.知道開普勒三定律的內(nèi)容。 3.能用開普勒三定律分析一些簡單的行星運動問題。 一、地心說與日心說 [觀圖助學(xué)] 地心說示意圖 日心說示意圖 地心說和日心說的內(nèi)容分別是什么? 1.地心說:地球是宇宙的中心,是靜止不動的,太陽、月亮以及其他行星都繞地球運動。 2.日心說:太陽是靜止不動的,地球和其他行星都繞太陽運動。 3.局限性:都把天體的運動看得很神圣,認為天體的運動必然是最完美、最和諧的勻速圓周運動,而與丹麥天文學(xué)家第谷的觀測數(shù)據(jù)不符。 [理解概念] 判斷下列說法是否正確。 (1)地球是整個宇宙的中心,其他天體都繞地球運動。() (2)太陽是整個宇宙的中心,其他天體都繞太陽運動。() (3)太陽每天東升西落,這一現(xiàn)象說明太陽繞著地球運動。() 二、開普勒行星運動定律 [觀圖助學(xué)] 如圖所示,太陽系的八大行星圍繞太陽以什么樣的軌道運轉(zhuǎn)?其運動有什么規(guī)律? 開普勒三定律 定律 內(nèi)容、公式 圖示 開普勒第一定律 所有行星繞太陽運動的軌道都是橢圓,太陽處在橢圓的一個焦點上 開普勒第二定律 對任意一個行星來說,它與太陽的連線在相等的時間內(nèi)掃過相等的面積 開普勒第三定律 所有行星的軌道的半長軸的三次方跟它的公轉(zhuǎn)周期的二次方的比值都相等 公式:=k,k是一個與行星無關(guān)的常量 [理解概念] 判斷下列說法是否正確。 (1)各顆行星圍繞太陽運動的的速率是不變的。() (2)開普勒定律僅適用于行星繞太陽的運動。() (3)行星軌道的半長軸越長,行星的周期越長。(√) (4)可近似認為地球圍繞太陽做圓周運動。(√) 對開普勒三定律的理解 [觀察探究] (1)如圖1所示是地球繞太陽公轉(zhuǎn)及四季的示意圖,由圖可知地球在春分日、夏至日、秋分日和冬至日四天中哪一天繞太陽運動的速度最大?哪一天繞太陽運動的速度最??? 圖1 答案 冬至日,夏至日。由圖可知,冬至日地球在近日點附近,夏至日在遠日點附近,由開普勒第二定律可知,冬至日地球繞太陽運動的速度最大,夏至日地球繞太陽運動的速度最小。 (2)如圖2所示是“金星凌日”的示意圖,觀察圖中地球、金星的位置,地球和金星哪一個的公轉(zhuǎn)周期更長? 圖2 答案 地球。由題圖可知,地球到太陽的距離大于金星到太陽的距離,根據(jù)開普勒第三定律可得,地球的公轉(zhuǎn)周期更長一些。 [探究歸納] 1.開普勒第一定律的理解 如圖3所示,各行星的軌道不同,但所有行星都沿橢圓軌道繞太陽運動,太陽位于所有橢圓軌道的一個公共焦點上。因此開普勒第一定律又叫軌道定律。 圖3 2.開普勒第二定律的理解 如圖4所示,如果時間間隔t2-t1=t4-t3,由開普勒第二定律知道面積SA=SB,可見離太陽越近,行星在相等時間內(nèi)經(jīng)過的弧長越長,即行星的速率越大,故近日點速率最大,遠日點速率最??;行星靠近太陽運動時速率增大,遠離太陽運動時速率減小。因此開普勒第二定律又叫面積定律。 圖4 3.開普勒第三定律的理解 (1)如圖5所示,開普勒第三定律揭示了周期T與軌道半長軸a之間的關(guān)系,橢圓軌道半長軸a越長的行星,其公轉(zhuǎn)周期T越大;反之,其公轉(zhuǎn)周期T越小。因此開普勒第三定律又叫周期定律。 圖5 (2)公式=k中的比例常數(shù)k與行星無關(guān),只與太陽(太陽是中心天體)有關(guān)。由于定律具有普遍性,即對于其它不同的星系,常數(shù)k是不同的,且常數(shù)k是由中心天體決定的。 [試題案例] [例1] (2018煙臺高一檢測)火星和木星沿各自的橢圓軌道繞太陽運行,根據(jù)開普勒行星運動定律可知( ) A.太陽位于木星運行軌道的中心 B.火星和木星繞太陽運行速度的大小始終相等 C.火星與木星公轉(zhuǎn)周期之比的平方等于它們軌道半長軸之比的立方 D.相同時間內(nèi),火星與太陽連線掃過的面積等于木星與太陽連線掃過的面積 解析 太陽位于木星運行軌道的一個焦點上,A項錯誤;火星與木星軌道不同,在運行時速度不可能始終相等,B項錯誤;“在相等的時間內(nèi),行星與太陽連線掃過的面積相等”是對于同一顆行星而言的,不同的行星,則不具有可比性,D項錯誤;根據(jù)開普勒第三定律,對同一中心天體來說,行星公轉(zhuǎn)半長軸的三次方與其周期的平方的比值為一定值,C項正確。 答案 C (1)“在相等的時間內(nèi),行星與太陽連線掃過的面積相等”是對于同一顆行星而言的。對不同行星則不成立。 (2)公式=k中的比例常數(shù)k對繞同一中心天體運轉(zhuǎn)的星體是相同的。對不同的星系比例常數(shù)k一般是不同的。 [針對訓(xùn)練1] 下列關(guān)于行星繞太陽運動的說法中,正確的是( ) A.所有行星都在同一橢圓軌道上繞太陽運動 B.行星繞太陽運動時,太陽位于行星軌道的中心處 C.離太陽越近的行星運動周期越長 D.所有行星軌道的半長軸的三次方跟公轉(zhuǎn)周期的二次方的比值都相等 解析 由開普勒行星運動定律可知所有行星軌道都是橢圓,太陽位于一個焦點上,行星在橢圓軌道上運動的周期T和半長軸a滿足=k(常量),對于同一中心天體,k不變,故A、B、C錯誤,D正確。 答案 D 開普勒第三定律的應(yīng)用 [觀察探究] 如圖6所示是火星沖日的年份示意圖,請思考 圖6 (1)觀察圖中地球、火星的位置,地球和火星誰的公轉(zhuǎn)周期更長? (2)已知地球的公轉(zhuǎn)周期是一年,由此計算火星的公轉(zhuǎn)周期還需要知道哪些數(shù)據(jù)? (3)地球、火星的軌道可近似看成圓軌道,開普勒第三定律還適用嗎? 答案 (1)由題圖可知,地球到太陽的距離小于火星到太陽的距離,根據(jù)開普勒第三定律可得:火星的公轉(zhuǎn)周期更長一些。 (2)還需要知道地球、火星各自軌道的半長軸。 (3)對于圓軌道,開普勒第三定律仍然適用,只是=k中的半長軸a換成圓的軌道半徑r。 [探究歸納] 1.適用范圍:天體的運動可近似看成勻速圓周運動,開普勒第三定律既適用于做橢圓運動的天體,也適用于做圓周運動的天體。 2.應(yīng)用 (1)知道了行星到太陽的距離,就可以由開普勒第三定律計算或比較行星繞太陽運行的周期。反之,知道了行星的周期,也可以計算或比較其到太陽的距離。 (2)知道了彗星的周期,就可以由開普勒第三定律計算彗星軌道的半長軸長度,反之,知道了彗星的半長軸也可以求出彗星的周期。 3.k值:表達式=k中的常數(shù)k,只與中心天體的質(zhì)量有關(guān),如研究行星繞太陽運動時,常數(shù)k只與太陽的質(zhì)量有關(guān),研究衛(wèi)星繞地球運動時,常數(shù)k只與地球的質(zhì)量有關(guān)。 [試題案例] [例2] (2018濰坊高一檢測)2016年11月18日,我國神舟十一號載人飛船返回艙在內(nèi)蒙古主著陸場成功著陸,如圖7甲。飛船的回收過程可簡化為如圖乙所示,回收前飛船沿半徑為R的圓周繞地球運動,其周期為T,為了要飛船返回地面,飛船運動至軌道上某點A處,將速率降低到適當(dāng)數(shù)值,從而使飛船沿著以地心為焦點的橢圓軌道運動,該橢圓和地球表面在B點相切。如果地球半徑為R0,求飛船由A點運動到B點所需要的時間。 圖7 【思路點撥】 (1)開普勒第三定律對圓軌道和橢圓軌道都適用。 (2)該橢圓軌道的半長軸大小為。 (3)飛船由A運動到B點的時間等于其橢圓軌道對應(yīng)周期的一半。 解析 飛船沿橢圓軌道返回地面,由題圖可知,飛船由A點到B點所需要的時間剛好是沿圖中整個橢圓運動周期的一半,橢圓軌道的半長軸為,設(shè)飛船沿橢圓軌道運動的周期為T′。 根據(jù)開普勒第三定律有=。 解得T′=T=T。 所以飛船由A點到B點所需要的時間為 t==T。 答案 T 應(yīng)用開普勒第三定律的步驟 (1)判斷兩個行星的中心天體是否相同,只有對同一個中心天體開普勒第三定律才成立。 (2)明確題中給出的周期關(guān)系或半徑關(guān)系。 (3)根據(jù)開普勒第三定律==k列式求解。 [針對訓(xùn)練2] 如圖8所示,某人造地球衛(wèi)星繞地球做勻速圓周運動,其軌道半徑為月球繞地球運轉(zhuǎn)半徑的,設(shè)月球繞地球運動的周期為27天,則此衛(wèi)星的運轉(zhuǎn)周期大約是( ) 圖8 A.天 B.天 C.1天 D.9天 解析 由于r衛(wèi)=r月,T月=27天,由開普勒第三定律=,可得T衛(wèi)=1天,故選項C正確。 答案 C “微分法” 在開普勒第二定律中的應(yīng)用 “微分法”,又叫“微元法”,是解答物理問題常用的一種思維方法,即取某物理量在趨近零的情況下,建立有關(guān)的物理模型,依據(jù)相關(guān)公式建立關(guān)系,然后求解有關(guān)問題。 當(dāng)星體沿著橢圓軌道運動時,在很短時間內(nèi)的一小段軌跡可以看成近似圓弧,從而可以應(yīng)用開普勒第二定律求解星體在不同位置的速率關(guān)系。 【針對練習(xí)】 如圖9所示,某行星沿橢圓軌道運行,遠日點離太陽的距離為a,近日點離太陽的距離為b,過遠日點時行星的速率為va,則過近日點時行星的速率為( ) 圖9 A.vb=va B.vb=va C.vb=va D.vb=va 解析 若行星從軌道的A點經(jīng)足夠短的時間t運動到A′點,則行星與太陽的連線掃過的面積可看作扇形,其面積SA=;若行星從軌道的B點也經(jīng)時間t運動到B′點,則行星與太陽的連線掃過的面積SB=;根據(jù)開普勒第二定律得=,即vb=va,故C正確。 答案 C 1.(“日心說”的理解)(多選)16世紀(jì),哥白尼根據(jù)天文觀測的大量資料,經(jīng)過40多年的天文觀測和潛心研究,提出“日心說”的如下四個基本論點,這四個論點目前看存在缺陷的是( ) A.宇宙的中心是太陽,所有行星都繞太陽做勻速圓周運動 B.地球是繞太陽做勻速圓周運動的行星,月球是繞地球做勻速圓周運動的衛(wèi)星,它繞地球運轉(zhuǎn)的同時還跟地球一起繞太陽運動 C.天空不轉(zhuǎn)動,因為地球每天自西向東轉(zhuǎn)一周,造成太陽每天東升西落的現(xiàn)象 D.與日地距離相比,恒星離地球都十分遙遠,比日地間的距離大得多 解析 所有行星圍繞太陽運動的軌道都是橢圓,太陽處在所有橢圓的一個焦點上;行星在橢圓軌道上運動的周期T和軌道半長軸滿足=恒量,故所有行星實際并不是在做勻速圓周運動;整個宇宙是在不停運動的。 答案 ABC 2.(開普勒第二定律的理解)某行星繞太陽運行的橢圓軌道如圖10所示,F(xiàn)1和F2是橢圓軌道的兩個焦點,行星在A點的速率比在B點的大,則太陽位于( ) 圖10 A.F2 B.A C.F1 D.B 解析 根據(jù)開普勒第二定律:太陽和行星的連線在相等的時間內(nèi)掃過相同的面積,因為行星在A點的速率比在B點的速率大,所以太陽和行星的連線必然是行星與F2的連線,故太陽位于F2,選項A正確。 答案 A 3.(對開普勒第三定律的理解)(2018鹽城高一檢測)理論和實踐證明,開普勒定律不僅適用于太陽系中的天體運動,而且對一切天體(包括衛(wèi)星繞行星的運動)都適用。下面對于開普勒第三定律的公式=k,下列說法正確的是( ) A.公式只適用于軌道是橢圓的運動 B.公式中的k值,對于所有行星(或衛(wèi)星)都相等 C.公式中的k值,只與中心天體有關(guān),與繞中心天體旋轉(zhuǎn)的行星或衛(wèi)星無關(guān) D.若已知月球與地球之間的距離,根據(jù)公式可求出地球與太陽之間的距離 答案 C 4.(開普勒第三定律的應(yīng)用)木星的公轉(zhuǎn)周期約為12年,如把地球到太陽的距離作為1天文單位,則木星到太陽的距離約為( ) A.2天文單位 B.4天文單位 C.5.2天文單位 D.12天文單位 解析 木星、地球都環(huán)繞太陽按橢圓軌道運動,近似計算時可當(dāng)成圓軌道處理,因此它們到太陽的距離可當(dāng)成是繞太陽公轉(zhuǎn)的軌道半徑,根據(jù)開普勒第三定律=得r木=r地=1 天文單位≈5.2天文單位。 答案 C 合格性檢測 1.(多選)下列說法中正確的是( ) A.地球是宇宙的中心,太陽、月球及其他行星都繞地球運動 B.太陽是靜止不動的,地球和其他行星都繞太陽運動 C.地球是繞太陽運動的一顆行星 D.日心說和地心說都不完善 解析 地心說和日心說都不完善,太陽、地球等天體都是運動的,不可能靜止,故B錯誤,D正確;地球是繞太陽運動的普通行星,并非宇宙的中心天體,故A錯誤,C正確。 答案 CD 2.(多選)如圖1所示,對開普勒第一定律的理解,下列說法中正確的是( ) 圖1 A.在行星繞太陽運動一周的時間內(nèi),它離太陽的距離是不變的 B.在行星繞太陽運動一周的時間內(nèi),它離太陽的距離是變化的 C.某個行星繞太陽運動的軌道一定是在某一固定的平面內(nèi) D.某個行星繞太陽運動的軌道一定不在一個固定的平面內(nèi) 解析 根據(jù)開普勒第一定律(軌道定律)的內(nèi)容可以判定:行星繞太陽運動的軌道是橢圓,有時遠離太陽,有時靠近太陽,所以它離太陽的距離是變化的,選項A錯誤,B正確;行星圍繞著太陽運動,由于受到太陽的引力作用而被約束在一定的軌道上,選項C正確,D錯誤。 答案 BC 3.(2018邯鄲高一檢測)一恒星系統(tǒng)中,行星a繞恒星做圓周運動的公轉(zhuǎn)周期是0.6年,行星b繞恒星做圓周運動的公轉(zhuǎn)周期是1.9年,根據(jù)所學(xué)知識比較兩行星到恒星的距離關(guān)系( ) A.行星a距離恒星近 B.行星b距離恒星近 C.行星a和行星b到恒星的距離一樣 D.條件不足,無法比較 解析 根據(jù)開普勒第三定律=可知ra<rb,故選項A正確。 答案 A 4.如圖2所示是行星m繞恒星M運動情況的示意圖,下列說法正確的是( ) 圖2 A.速度最大點是B點 B.速度最小點是C點 C.m從A到B做減速運動 D.m從B到A做減速運動 解析 由開普勒第二定律可知,近日點時行星運行速度最大,因此A、B錯誤;行星由A向B運動的過程中,行星與恒星的連線變長,其速度減小,故C正確,D錯誤。 答案 C 5.(2018德州高一檢測)地球繞太陽運動的軌道是橢圓,因而地球與太陽之間的距離隨季節(jié)變化。若認為冬至這天地球離太陽最近,夏至最遠。則下列關(guān)于地球在這兩天繞太陽公轉(zhuǎn)時速度大小的說法中正確的是( ) A.地球公轉(zhuǎn)速度是不變的 B.冬至這天地球公轉(zhuǎn)速度大 C.夏至這天地球公轉(zhuǎn)速度大 D.無法確定 解析 冬至這天地球與太陽的連線短,夏至長。根據(jù)開普勒第二定律,要在相等的時間內(nèi)掃過相等的面積,則在相等的時間內(nèi),冬至?xí)r地球運動的路徑要比夏至?xí)r長,所以冬至?xí)r地球運動的速度比夏至?xí)r的速度大,選項B正確。 答案 B 6.假如宇宙飛船進入一個圍繞太陽運動的近乎圓形的軌道上運動,如果軌道半徑是地球軌道半徑的9倍,那么宇宙飛船繞太陽運行的周期是( ) A.3年 B.9年 C.27年 D.81年 解析 根據(jù)開普勒第三定律=,得T船=27年。 答案 C 7.(2017忻州高一檢測)行星A、B的質(zhì)量分別為m1和m2,繞太陽運行的軌道半長軸分別為r1和r2,則A、B的公轉(zhuǎn)周期之比為( ) A. B. C. D.無法確定 解析 由開普勒第三定律=k得,=,所以=,=,C正確。 答案 C 8.鬩神星,是一個已知最大的屬于柯伊伯帶及海王星外天體的矮行星,因觀測估算比冥王星大,在公布發(fā)現(xiàn)時曾被其發(fā)現(xiàn)者和NASA等組織稱為“第十大行星”。若將地球和鬩神星繞太陽的運動看作勻速圓周運動,它們的運行軌道如圖3所示。已知鬩神星繞太陽運行一周的時間約為557年,設(shè)地球繞太陽運行的軌道半徑為R,則鬩神星繞太陽運行的軌道半徑約為( ) 圖3 A.R B.R C.R D.R 解析 由開普勒第三定律=,得r鬩=R。選項C正確。 答案 C 等級性檢測 9.(2018信陽高一檢測)2018年6月2日,“高分六號”光學(xué)遙感衛(wèi)星在酒泉衛(wèi)星發(fā)射中心成功發(fā)射,這是我國第一顆實現(xiàn)精準(zhǔn)農(nóng)業(yè)觀測的高分衛(wèi)星。其運行軌道為如圖4所示的繞地球E運動的橢圓軌道,地球E位于橢圓的一個焦點上。軌道上標(biāo)記了“高分六號”經(jīng)過相等時間間隔(Δt=,T為軌道周期)的有關(guān)位置。則下列說法正確的是( ) 圖4 A.面積S1>S2 B.衛(wèi)星在軌道A點的速度小于B點的速度 C.T2=Ca3,其中C為常數(shù),a為橢圓半長軸 D.T2=C′b3,其中C′為常數(shù),b為橢圓半短軸 解析 根據(jù)開普勒第二定律可知,衛(wèi)星與地球的連線在相同時間內(nèi)掃過的面積相等,故面積S1=S2,選項A錯誤;根據(jù)開普勒第二定律可知,衛(wèi)星在軌道A點的速度大于B點的速度,選項B錯誤;根據(jù)開普勒第三定律可知=C,故選項C正確,D錯誤。 答案 C 10.(2018臨沂高一檢測)地球的公轉(zhuǎn)軌道接近圓,但彗星的運動軌道則是一個非常扁的橢圓,天文學(xué)家哈雷曾經(jīng)在1682年跟蹤過一顆彗星,他算出這顆彗星軌道的半長軸約等于地球軌道半徑的18倍,并預(yù)言這顆彗星將每隔一定時間就會出現(xiàn),哈雷的預(yù)言得到證實,該彗星被命名為哈雷彗星。哈雷彗星最近出現(xiàn)的時間是1986年,請你根據(jù)開普勒行星運動第三定律(即=k,其中T為行星繞太陽公轉(zhuǎn)的周期,r為軌道的半長軸)估算。它下次飛近地球是哪一年? 圖5 解析 由=k,其中T為行星繞太陽公轉(zhuǎn)的周期,r為軌道的半長軸,k是對太陽系中的任何行星都適用的常量??梢愿鶕?jù)已知條件列方程求解。 將地球的公轉(zhuǎn)軌道近似成圓形軌道,其周期為T1,半徑為r1;哈雷彗星的周期為T2,軌道半長軸為r2,則根據(jù)開普勒第三定律有:= 因為r2=18r1,地球公轉(zhuǎn)周期為1年,所以可知哈雷彗星的周期為T2=T1=76.4年。 所以它下次飛近地球是在2062年。 答案 2062年- 1.請仔細閱讀文檔,確保文檔完整性,對于不預(yù)覽、不比對內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請點此認領(lǐng)!既往收益都歸您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該PPT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計者僅對作品中獨創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 新課標(biāo)2018-2019學(xué)年高考物理 1.2.1 行星的運動學(xué)案 新課 2018 2019 學(xué)年 高考 物理 1.2 行星 運動學(xué)
鏈接地址:http://www.3dchina-expo.com/p-5453750.html