2018-2019學(xué)年高中數(shù)學(xué) 第一講 相似三角形的判定及有關(guān)性質(zhì) 三 相似三角形的判定及性質(zhì)同步指導(dǎo)練習(xí) 新人教A版選修4-1.doc
《2018-2019學(xué)年高中數(shù)學(xué) 第一講 相似三角形的判定及有關(guān)性質(zhì) 三 相似三角形的判定及性質(zhì)同步指導(dǎo)練習(xí) 新人教A版選修4-1.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2018-2019學(xué)年高中數(shù)學(xué) 第一講 相似三角形的判定及有關(guān)性質(zhì) 三 相似三角形的判定及性質(zhì)同步指導(dǎo)練習(xí) 新人教A版選修4-1.doc(5頁(yè)珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
三 相似三角形的判定及性質(zhì) 一、基礎(chǔ)達(dá)標(biāo) 1.在△ABC中,P為AB上一點(diǎn),在下列四個(gè)條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB.其中,能判定△APC與△ACB相似的條件是( ) A.①②④ B.①③④ C.②③④ D.①②③ 解析 如圖,∵∠A=∠A,∴①∠ACP=∠B,②∠APC=∠ACB時(shí),都滿足三角形相似的條件; 當(dāng)AC2=APAB時(shí), 即=,∴③也滿足相似條件;④中兩個(gè)對(duì)應(yīng)邊的夾角不是∠A,故不相似. 答案 D 2.如圖所示,△ABC∽△AED∽△AFG,DE是△ABC的中位線,△ABC與△AFG的相似比是3∶2,則△AED與△AFG的相似比是( ) A.3∶4 B.4∶3 C.8∶9 D.9∶8 解析 因?yàn)椤鰽BC與△AFG的相似比是3∶2,故AB∶AF=3∶2,又△ABC與△AED的相似比是2∶1,即AB∶AE=2∶1,故△AED與△AFG的相似比k=AE∶AF===.故選A. 答案 A 3.在△ABC中,D,E分別為AB,AC上的點(diǎn),且DE∥BC,△ADE的面積是2 cm2,梯形DBCE的面積為6 cm2,則DE∶BC的值為( ) A.1∶ B.1∶2 C.1∶3 D.1∶4 解析 如圖,∵DE∥BC,∴△ADE∽△ABC,∴S△ADE∶S△ABC=2∶(6+2)=1∶4,∴DE∶BC=1∶2. 答案 B 4.(2016黃岡調(diào)考)如圖,在?ABCD中,AE∶EB=1∶2,△AEF的面積為6, 則△ADF的面積為_(kāi)_______. 解析 ∵AE∥DC,AE∶EB=1∶2, ∴△AEF∽△CDF,且相似比====,又△AEF的邊EF上的高與△ADF的邊DF上的高相等, ∴==. 又S△AEF=6,∴S△ADF=18. 答案 18 5.如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對(duì)角線BD⊥DC,AD=3,BC=7,則BD2=________. 解析 ∵∠ADC+∠BCD=180,∠BDC=90, ∴∠ADB+∠BCD=90. 而∠ADB+∠ABD=90, ∴∠ABD=∠BCD. 又∠BAD=∠BDC=90, ∴Rt△ABD∽R(shí)t△DCB. ∴=. ∴BD2=ADBC=37=21. 答案 21 6.如圖所示,在?ABCD中E,F(xiàn)分別在AD與CB的延長(zhǎng)線上,請(qǐng)寫(xiě)出圖中所有的相似三角形. 解 ∵AB∥CD, ∴△EDH∽△EAG,△CHM∽△AGM,△FBG∽△FCH. 又∵AD∥BC, ∴△AEM∽△CFM,△EDH∽△FCH,△AEG∽△BFG,△ABC∽△CDA. ∴圖中的相似三角形有△AEM∽△CFM,△AGM∽△CHM,△EDH∽△EAG∽△FBG∽△FCH, △ABC∽△CDA. 二、能力提升 7.在△ABC中,AB=9,AC=12,BC=18,點(diǎn)D為AC上一點(diǎn),DC=AC,在AB上取一點(diǎn)E,得到△ADE,若△ADE與△ABC相似,則DE的長(zhǎng)為( ) A.6 B.8 C.6或8 D.14 解析 當(dāng)△ADE∽△ACB時(shí),則=,∴DE==6,當(dāng)△ADE∽△ABC時(shí),則=,∴DE==8. 答案 C 8.如圖,BD⊥AE,∠C=90,AB=4,BC=2,AD=3.則DE=________,CE=________. 解析 在Rt△ACE和Rt△ADB中,∠A是公共角, ∴△ACE∽△ADB,∴=. ∴AE====8. 則DE=AE-AD=8-3=5. 在Rt△ACE中,CE===2. 答案 5 2 9.如圖所示,∠B=∠D,AE⊥BC,∠ACD=90,且AB=6,AC=4,AD=12,則BE=________. 解析 ∵∠B=∠D,∠AEB=∠ACD=90,∴△AEB∽△ACD,從而得=,=,解得AE=2,故BE==4. 答案 4 10.如圖,已知在正方形ABCD中,P是BC上的點(diǎn),有BP=3PC,Q是CD的中點(diǎn). 求證:△ADQ∽△QCP. 證明 在正方形ABCD中, ∵Q是CD的中點(diǎn),∴=2. ∵=3,∴=4. 又BC=2DQ,∴=2. 在△ADQ和△QCP中, ==2,∠C=∠D=90, ∴△ADQ∽△QCP. 11.如圖所示,△ABC為正三角形,D,E分別是AC,BC邊上的點(diǎn)(不在頂點(diǎn)),∠BDE=60. (1)求證:△DEC∽△BDA; (2)若正三角形ABC的邊長(zhǎng)為6,當(dāng)D點(diǎn)在什么位置時(shí),可使BE最短,此時(shí)BE長(zhǎng)是多少? (1)證明 ∵∠BDE=60, ∴∠BDC=∠BDE+∠CDE=60+∠CDE. 又∠BDC是△ABD的一個(gè)外角,且∠A=60, ∴∠BDC=∠A+∠ABD=60+∠ABD, ∴∠CDE=∠ABD. 又∵∠A=∠C=60, ∴△DEC∽△BDA. (2)解 設(shè)DC=x,BE=y(tǒng), 則EC=6-y,AD=6-x. 由(1)可得=,整理得=, 即y=x2-x+6(0- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來(lái)的問(wèn)題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁(yè)顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開(kāi)word文檔。
- 特殊限制:
部分文檔作品中含有的國(guó)旗、國(guó)徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2018-2019學(xué)年高中數(shù)學(xué) 第一講 相似三角形的判定及有關(guān)性質(zhì) 相似三角形的判定及性質(zhì)同步指導(dǎo)練習(xí) 新人教A版選修4-1 2018 2019 學(xué)年 高中數(shù)學(xué) 第一 相似 三角形 判定 有關(guān) 性質(zhì) 同步
鏈接地址:http://www.3dchina-expo.com/p-6125268.html