ZL50輪式裝載機(jī)工作裝置設(shè)計含7張CAD圖
ZL50輪式裝載機(jī)工作裝置設(shè)計含7張CAD圖,zl50,輪式,裝載,機(jī)工,裝置,設(shè)計,cad
Tool carrier for setting and placing tools for loaders, and method for setting and placing toolsThe invention claimed is:1. A tool lock comprising: a tool carrier comprising an upper cross brace and a lower cross brace connected by at least one profile plate and at least one support plate, wherein the area between the at least one profile plate and the at least one support plate define a tool holding area for engaging and locking a tool comprising a fastening lug; a lock comprising a handle for the manual movement of the lock from the locked position to the unlocked position and a first guiding and locking section connected to a second guiding and locking section, wherein the second guiding and locking section comprises a spring connected to a disk for engaging the tool carrier and a heel; and a setting up and holding device supported on the tool carrier comprising a first rotary lever connected to a second rotary lever about a rotation axle and a spring coupled to the tool carrier and to the first rotary lever, wherein the first rotary lever further comprises an end configured to engage the fastening lug of the tool and the second rotary lever further comprises an end configured to engage the heel so as to maintain the lock in an unlocked position. 2. The tool lock of claim 1, wherein the second rotary lever further comprises an end configured to engage the heel so as to maintain the lock in an unlocked position. 3. The tool lock of claim 1, wherein the at least one profile plate and the at least one support plate each further comprise a borehole for guiding the lock. 4. The tool lock of claim 1, wherein the area between the at least one profile plate and the at least one support plate define a tool holding area for engaging and locking a tool. 5. The tool lock of claim 1, wherein the handle further comprises two legs connected to a crosslink on one end and connected to a connecting plate on the other end. 6. The tool lock of claim 5, wherein the second guiding and locking section extends through a borehole in a connecting plate to form one of the two legs. 7. The tool lock of claim 6, wherein the first guiding and locking section is connected on the opposite side of the connecting plate from the two legs. 8. The tool lock of claim 1, wherein the first rotary lever further comprises an end activated by the tool to move lock into the locked position. 9. A method for automatically locking a tool to a loader comprising: pulling a handle of a lock to place a setting up and holding device supported on a tool carrier in an unlocked position; maneuvering the tool carrier to engage a suspension hook of a tool comprising a fastening lug; further maneuvering the tool carrier so that the fastening lug interacts with the setting up and holding device such that the lock secures the tool to the tool carrier in a locked position; wherein the lock comprises a first guiding and locking section connected to a second guiding and locking section, wherein the second guiding and locking section comprises a spring connected to a disk for engaging the tool carrier and a heel to maintain the lock in a locked position; wherein the setting up and holding device comprises a first rotary lever connected to a second rotary lever about a rotation axle and a spring coupled to the tool carrier frame and to the first rotary lever; wherein the fastening lug interacts with an end of the first rotary lever to rotate the first rotary lever about the rotation axle thereby rotating the second rotary lever and in turn releasing the heel to secure the tool to the tool carrier. 10. The method of claim 9, wherein the tool carrier comprises a tool carrier frame including an upper cross brace and a lower cross brace connected by at least one profile plate and at least one support plate. Description:TECHNICAL FIELDThe tool carrier (18) disclosed herein has a locking device (46) with a low degree of complexity, a low diversity of parts, and a high degree of reliability. By means of the completely automated locking process, the setting up of the tool (21) on the tool carrier (18) is considerably simplified for the operator or the driver, since neither has to leave the cabin any longer in order to lock the tool. The actuation of the setting up and holding device (50) by the tool (21) during the setting up of the tool (21) ensures that the locking device (46) is used only if a tool (21) is also set up. An erroneous movement of the locking device into its locking position due to vibrations or by a movement of the tool carrier (18) or the front loader (14) without a set-up tool is effectively avoided.BACKGROUNDMethods are known for equipping loading vehicles or loaders, in particular, front loaders for use on agricultural tractors, but also construction vehicles such as wheeled loaders or also telescopic loaders with different tools. Thus, for example, it is possible to use forklifts, lances, grippers, or scoops as loading tools. The tools are usually connected to so-called tool carriers or held by them with corresponding holding devices. The tool carriers are thereby usually firmly connected with the front end of the swing arm or the boom of the loading vehicle, wherein the holding devices, constructed on the tool carriers, are an interface to the tool and make it possible for the tools, on the one hand, to be interchangeable or replaceable and, on the other hand however, to be connected also with the tool carrier in an appropriately secured manner. The holding devices thereby usually have tool holders on which the corresponding tool is set up and a lock with which the tool is locked on the tool carrier after it has been set up. Such locking devices known from the state of the art are, as a rule, cumbersome and expensive.In view of this, the fundamental goal is to propose a solution with a simple and low-cost locking device that is an alternative to that given by the state of the art for a tool carrier.SUMMARYThe lock for a tool carrier disclosed here has a locking device with a low degree of complexity, a low diversity of parts, and a high degree of reliability. The automated setting up of the tool on the tool carrier is considerably simplified for the operator or the driver, since neither has to leave the cabin any longer in order to lock the tool. This means a savings in time. The simple structure of the locking device and the low diversity of parts facilitate the installation in production and thus contribute also to the reduction of costs. The actuation of the setting up and holding devices by the tool during the setting up of the tool ensures that the lock is activated only if a tool is also set up. An erroneous movement of the lock into its locking position due to vibrations or by a movement of the tool carrier or the front loader without a set-up tool is effectively avoided.The lock can be accessible via a handle which is located on the tool carrier or which extends outwards on one side of the tool carrier. By pulling on the handle, the lock can be moved out of its locking position. By a subsequent slight turning of the handle, the handle is then brought into its unlocking position, in which the lock is supported on the tool carrier frame.The lock can be pre-tensioned transversely with a spring. The spring can, for example, be designed as a coil spring which is supported on a rod-shaped area of the lock. The coil spring is preferably supported on one side, against a stop fixed on the lock, and on the other side, against the tool carrier frame, so that with a transversal movement of the lock (that is, with a movement of the lock to one side of the tool carrier), the coil spring is compressed and a pretension force is generated. The coil spring and the stop are designed and situated in such a way that the coil spring does not have a pretension in the locking position, or has only a minimal one, and has its maximum pretension in the unlocking position.The locking device can be formed in such a way that on the handle side, it has a setting up and holding section and a first guiding and locking section oriented parallel to it. To this end, the lock can have rod sections on the handle side which are oriented parallel to one another and which are connected with one another, via a crosslink, on the ends on the handle side and are maintained at a specific distance to one another.Furthermore, on the side opposite to the handle, the lock has a second guiding and locking section which aligns transversely to the first guiding and locking section. The lock can, for example, be formed in such a way that the setting up and holding section on the handle end has a correspondingly bent course, as it proceeds to the opposite of the tool carrier, so that the two open ends of the lock jointly point in one direction and are aligned with one another.The setting up and holding devices comprise a first rotary lever and a second rotary lever, which are supported on a common rotation axle, so as to be nonrotatable relative to one another, wherein the first and second rotary levers can be swiveled by engaging a tool. The setting up and holding devices are accordingly formed by two rotary levers which extend from a rotation axle, wherein the rotation axle is supported in the area of a lower connection site for the tool on the tool carrier frame or in an area in which a fastening lug, which is formed on the tool and through which the lock is pushed in order to connect with the tool carrier frame, protrudes or projects. For example, one rotary lever can function as a kind of trigger and can be deflected or activated and thus swiveled by the fastening lug protruding into the tool frame when the tool is set up. The resulting rotary movement of the rotation axle is correspondingly transferred to the second rotary lever so that the second rotary lever engages with the setting up and holding section of the lock. The first rotary lever is thereby equipped with a longer lever arm than the second rotary lever, since the former must extend into the guiding and locking section of the lock, with which the fastening lug of the tool is locked after the setting up is carried out; on the other hand, the second rotary lever extends only to the setting up and holding section of the lock, which is located closer to the rotation axle.In addition, a spring is provided which is connected with the tool carrier frame and preferably, with one of the rotary levers. Here, it is also possible to use a spring that is connected with the rotation axle. It is essential that a spring pretension be created during a deflection of the first rotary lever by the fastening lug, so that when the fastening lug is removed from the engagement area, the setting up and holding devices (first and second rotary levers) act, under pretension, against the setting up and holding section of the lock or engage with it under pretension.The tool holder of the type described above is particularly suitable for use on a loader, such as a front loader or a wheeled loader, in which, in particular, a frequent changing of the tool for different loading tasks is required.A corresponding method for the setting up and placing of a tool on a tool holder of a loader makes provision for a tool carrier to comprise a tool carrier frame and a locking device located on the tool carrier, with which a tool is locked or will be locked on the tool carrier by a transversely movable lock. The lock is moved, for the placing of the tool, from a locking position into a transversely spring pre-tensioned locking position, in which the lock is supported on the tool carrier frame or is brought there to a stop, wherein the locking device comprises the setting up and holding devices mentioned above, which were brought to a spring-pretensioned position during the setting up of the tool on the tool carrier. During the placing of the unlocked tool by the tool carrier, the setting up and holding devices are released by the fastening lug of the tool, so that the setting up and holding devices under pretension move against the lock and the lock is then released from its unlocking position supported on the tool carrier frame as a result of the spring force of the setting up and holding devices acting on it. In this interaction, the setting up and holding devices assume a holding position and the lock is moved from its unlocking position into a transversely spring pre-tensioned pre-locking position. In this pre-locking position, the lock is no longer supported, as before, on the tool carrier frame, but rather on the setting up and holding devices. With a renewed setting up of a tool, the setting up and holding devices are again deflected by the fastening lug constructed on the tool and brought from the holding position into the previously mentioned, spring pre-tensioned position. Since the lock is located, in the meantime, in its locking position and is supported on the setting up and holding devices and not as in the unlocking position, on the tool carrier frame, the holding function of the setting up and holding devices is cancelled and the lock is released, so that the released lock is brought from the pre-locking position into the locking position by transversal spring force.With the aid of the drawing which shows an embodiment example of the invention, the invention and other advantages and advantageous refinements and developments of the invention are described and explained in more detail below.BRIEF DESCRIPTION OF THE DRAWINGSFIG. 1 is a schematic side view of an agricultural vehicle with a front loader and with a tool carrier located on the front loader;FIG. 2 is a schematic perspective front view of the tool carrier from FIG. 1;FIG. 3 is a schematic side view of a tool for the tool carrier from FIGS. 1 and 2;FIG. 4 is a schematic, perspective front view of the tool carrier from FIG. 1 in a partial representation with a locking device in the locking position;FIG. 5 is a schematic, perspective front view of the tool carrier from FIG. 1 in a partial representation with the locking device in an unlocking position;FIG. 6 is a schematic, perspective front view of the tool carrier from FIG. 1 in a partial representation with the locking device in a pre-locking position;FIG. 7 is another schematic, perspective front view of the tool carrier from FIG. 1 in a partial representation with the locking device in the locking position;FIG. 8 is a schematic, perspective view of a lock of the locking device from FIGS. 4 to 7;FIG. 9 is a schematic, perspective view of the setting up and holding devices of the locking device from FIGS. 4 to 7;FIG. 10 is a schematic, transverse view of the lock on the tool carrier in the area of the setting up and holding devices in the locking position;FIG. 11 is a schematic, transverse view of the lock on the tool carrier in the area of the setting up and holding devices in the unlocking position; andFIG. 12 is a schematic, transverse view of the lock on the tool carrier in the area of the setting up and holding devices in the pre-locking position;DETAILED DESCRIPTION OF THE DRAWINGSFIG. 1 shows a loading vehicle 10 or loader in the form of an agricultural tractor 12 with a front loader 14. The front loader 14 has two loading swing arms 16 which are coupled on the tractor 12 and which extend forwards in the longitudinal direction of the tractor 12. On the front end of the loading swing arms 16, there extends, in the transverse direction to the loading swing arms 16, a tool carrier 18, wherein tool holding areas 20, 20′ are designed on the tool carrier 18, in which a tool 21 in the form of a loading scoop is suspended and locked.The tool carrier 18 and the related details are explained below, with the aid of FIGS. 2 and 4 to 12.The tool carrier 18 comprises a tool carrier frame 22 which was produced in a welded construction and which can be seen in detail in FIG. 2. The tool carrier frame comprises an upper cross brace 24 and a lower cross brace 26. The cross braces 24 and 26 are connected with one another by profile plates 30, 32, 34 aligned vertically and in the longitudinal direction, which are, in accordance with the lower cross brace 26, arranged on both sides of the tool carrier or symmetrical to the center of the tool carrier. Furthermore, support plates 38, which are provided with a borehole 36, are present; they are used together with other boreholes 40, 42, 44, formed in the profile plates 30, 32, 34, to support and guide a locking device 46.The locking device 46 comprises a lock 48 which extends transverse to the tool carrier 18 and which is shown in detail in FIG. 8 and setting up and holding devices 50, which are shown in detail in FIG. 9.The lock 48 is designed in the shape of a rod and has a handle 52, a first guiding and locking section 54 on the side of the handle, a second guiding and locking section 56, opposite the side of the handle, and a setting up and holding section 58. In its course from the setting up and holding section 58 to the opposite side of the tool carrier 18 or to the second guiding and locking section 56, the lock 48 has a course 60 that is bent in such a way that open ends 62, 64 of the lock 48 together point in a direction away from the handle 52 and are aligned with one another. Furthermore, a heel 66 is formed on the lock 48 in the area of the setting up and holding section 58. The heel 66 is formed here by an end of a tube 68, which is guided over a rod-shaped section 70 of the lock 48, on the side of the handle. The handle 52 is formed by a rod which is curved in the shape of a U and which has a short leg 72, a long leg 74, and a crosslink 76, wherein there is a connecting plate 78, which is firmly connected with the two legs 72, 74 of the handle, wherein the long leg 74 extends through a borehole in the connecting plate78 and forms the first guiding and locking section 54 of the lock 48 on the side of the handle. Between the legs 72, 74, the connecting plate 78is connected with the setting up and holding section 58 or the tube 68. The crosslink 76 is used to grip the lock 48, especially if it is brought from a locking position into an unlocking position. Between the curved course 60 of the lock 48 and the heel 66, a stop 80 has been constructed on the lock 48; a coil spring 82, pushed via the (rod-shaped) lock 48, is supported on it and extends in the direction of the handle52. On the end of the coil spring 82, a disk 84 is supported on the lock 48 so it can be displaced, wherein the disk 84 has an inside borehole which is larger than the diameter of the lock 48 but is smaller than the diameter of the coil spring 82. The disk 84 is used as a movable stop which, with an activation of the lock 48 with the tool carrier frame 22, is made to engage, in particular, with the profile plate 30 on the side of the handle. As a consequence of this, the coil spring 82 is compressed against the stop 80 and a pretension force is produced on the lock48, which presses the lock 48 into a locking position in accordance with FIG. 4. As already mentioned, the lock 48 is guided or supported, in a displaceable manner, into the boreholes 36 of the support plate 38, into the boreholes 40, 42 of the profile plates 30, 32, and into the borehole 42 of the profile plate 44 on the side of the handle, on its first guiding and locking sections 54, 56, on both sides of the tool carrier frame 22. The boreholes 36, 40, 42, 44 provided for the guiding or support of the lock 48 have a diameter which is slightly larger than an outside diameter of the lock 48, so that the lock 48 is transversely displaceable (that is, in the transverse direction to the front loader or in the direction of the width of the tool carrier 18), but is radially fixed. The setting up and holding section 58 of the lock 48 is also guided through the profile plates 30, 32, 34 on the side of the handle. To this end, boreholes 86, 88, 90, which have a larger diameter than the ou
收藏