2019-2020年人教版高中數(shù)學(xué)必修五教案:1-1-1 正弦定理.doc
《2019-2020年人教版高中數(shù)學(xué)必修五教案:1-1-1 正弦定理.doc》由會(huì)員分享,可在線閱讀,更多相關(guān)《2019-2020年人教版高中數(shù)學(xué)必修五教案:1-1-1 正弦定理.doc(9頁珍藏版)》請(qǐng)?jiān)谘b配圖網(wǎng)上搜索。
2019-2020年人教版高中數(shù)學(xué)必修五教案:1-1-1 正弦定理 項(xiàng)目 內(nèi)容 課題 1.1.1 正弦定理 (共 1 課時(shí)) 修改與創(chuàng)新 教學(xué) 目標(biāo) 一、知識(shí)與技能 1.通過對(duì)任意三角形邊長和角度關(guān)系的探索,掌握正弦定理的內(nèi)容及其證明方法; 2.會(huì)運(yùn)用正弦定理與三角形內(nèi)角和定理解斜三角形的兩類基本問題. 二、過程與方法 1.讓學(xué)生從已有的幾何知識(shí)出發(fā),共同探究在任意三角形中,邊與其對(duì)角的關(guān)系; 2.引導(dǎo)學(xué)生通過觀察、推導(dǎo)、比較,由特殊到一般歸納出正弦定理; 3.進(jìn)行定理基本應(yīng)用的實(shí)踐操作. 三、情感態(tài)度與價(jià)值觀 1.培養(yǎng)學(xué)生在方程思想指導(dǎo)下處理解三角形問題的運(yùn)算能力; 2.培養(yǎng)學(xué)生探索數(shù)學(xué)規(guī)律的思維能力,通過三角函數(shù)、正弦定理、向量的數(shù)量積等知識(shí)間的聯(lián)系來體現(xiàn)事物之間的普遍聯(lián)系與辯證統(tǒng)一. 教學(xué)重、 難點(diǎn) 教學(xué)重點(diǎn)1.正弦定理的概念; 2.正弦定理的證明及其基本應(yīng)用. 教學(xué)難點(diǎn)1.正弦定理的探索和證明; 2.已知兩邊和其中一邊的對(duì)角解三角形時(shí)判斷解的個(gè)數(shù). 教學(xué) 準(zhǔn)備 多媒體課件 教學(xué)過程 導(dǎo)入新課 師如右圖,固定△ABC的邊CB及∠B,使邊AC繞著頂點(diǎn)C轉(zhuǎn)動(dòng). 師思考:∠C的大小與它的對(duì)邊AB的長度之間有怎樣的數(shù)量關(guān)系? 生顯然,邊AB的長度隨著其對(duì)角∠C的大小的增大而增大. 師能否用一個(gè)等式把這種關(guān)系精確地表示出來? 師在初中,我們已學(xué)過如何解直角三角形,下面就首先來探討直角三角形中,角與邊的等式關(guān)系.如右圖,在Rt△ABC中,設(shè)BC =A,AC =B,AB =C,根據(jù)銳角三角函數(shù)中正弦函數(shù)的定義,有=sinA, =sinB,又sinC=1=,則.從而在直角三角形ABC中, . 推進(jìn)新課 師那么對(duì)于任意的三角形,以上關(guān)系式是否仍然成立?(由學(xué)生討論、分析) 生可分為銳角三角形和鈍角三角形兩種情況: 如右圖,當(dāng)△ABC是銳角三角形時(shí),設(shè)邊AB上的高是CD,根據(jù)任意角三角函數(shù)的定義,有CD=AsinB=BsinA,則,同理,可得.從而. (當(dāng)△ABC是鈍角三角形時(shí),解法類似銳角三角形的情況,由學(xué)生自己完成) 正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即 . 師是否可以用其他方法證明這一等式? 生可以作△ABC的外接圓,在△ABC中,令BC=A,AC=B,AB=C,根據(jù)直徑所對(duì)的圓周角是直角以及同弧所對(duì)的圓周角相等,來證明這一關(guān)系. 師很好!這位同學(xué)能充分利用我們以前學(xué)過的知識(shí)來解決此問題,我們一起來看下面的證法. 在△ABC中,已知BC=A,AC=B,AB=C,作△ABC的外接圓,O為圓心,連結(jié)BO并延長交圓于B′,設(shè)BB′=2R.則根據(jù)直徑所對(duì)的圓周角是直角以及同弧所對(duì)的圓周角相等可以得到 ∠BAB′=90,∠C =∠B′, ∴sinC=sinB′=. ∴. 同理,可得. ∴. 這就是說,對(duì)于任意的三角形,上述關(guān)系式均成立,因此,我們得到等式 . 點(diǎn)評(píng):上述證法采用了初中所學(xué)的平面幾何知識(shí),將任意三角形通過外接圓性質(zhì)轉(zhuǎn)化為直角三角形進(jìn)而求證,此證法在鞏固平面幾何知識(shí)的同時(shí),易于被學(xué)生理解和接受,并且消除了學(xué)生所持的“向量方法證明正弦定理是唯一途徑”這一誤解.既拓寬了學(xué)生的解題思路,又為下一步用向量方法證明正弦定理作了鋪墊. 師接下來,我們可以考慮用前面所學(xué)的向量知識(shí)來證明正弦定理.從定理內(nèi)容可以看出,定理反映的是三角形的邊角關(guān)系,而在向量知識(shí)中,哪一知識(shí)點(diǎn)體現(xiàn)邊角關(guān)系呢? 生向量的數(shù)量積的定義式AB=|A||B|Cosθ,其中θ為兩向量的夾角. 師回答得很好,但是向量數(shù)量積涉及的是余弦關(guān)系而非正弦關(guān)系,這兩者之間能否轉(zhuǎn)化呢? 生 可以通過三角函數(shù)的誘導(dǎo)公式sinθ=Cos(90-θ)進(jìn)行轉(zhuǎn)化. 師這一轉(zhuǎn)化產(chǎn)生了新角90-θ,這就為輔助向量j的添加提供了線索,為方便進(jìn)一步的運(yùn)算,輔助向量選取了單位向量j,而j垂直于三角形一邊,且與一邊夾角出現(xiàn)了90-θ這一形式,這是作輔助向量j垂直于三角形一邊的原因. 師在向量方法證明過程中,構(gòu)造向量是基礎(chǔ),并由向量的加法原則可得 而添加垂直于的單位向量j是關(guān)鍵,為了產(chǎn)生j與、、的數(shù)量積,而在上面向量等式的兩邊同取與向量j的數(shù)量積運(yùn)算,也就在情理之中了. 師下面,大家再結(jié)合課本進(jìn)一步體會(huì)向量法證明正弦定理的過程,并注意總結(jié)在證明過程中所用到的向量知識(shí)點(diǎn). 點(diǎn)評(píng): (1)在給予學(xué)生適當(dāng)自學(xué)時(shí)間后,應(yīng)強(qiáng)調(diào)學(xué)生注意兩向量的夾角是以同起點(diǎn)為前提,以及兩向量垂直的充要條件的運(yùn)用. (2)要求學(xué)生在鞏固向量知識(shí)的同時(shí),進(jìn)一步體會(huì)向量知識(shí)的工具性作用. 向量法證明過程: (1)△ABC為銳角三角形,過點(diǎn)A作單位向量j垂直于,則j與的夾角為90-A,j與的夾角為90-C. 由向量的加法原則可得 , 為了與圖中有關(guān)角的三角函數(shù)建立聯(lián)系,我們?cè)谏厦嫦蛄康仁降膬蛇呁∨c向量j的數(shù)量積運(yùn)算,得到 由分配律可得 . ∴|j|Cos90+|j|Cos(90-C)=|j|Cos(90-A). ∴AsinC=CsinA. ∴. 另外,過點(diǎn)C作與垂直的單位向量j,則j與的夾角為90+C,j與的夾角為90+B,可得. (此處應(yīng)強(qiáng)調(diào)學(xué)生注意兩向量夾角是以同起點(diǎn)為前提,防止誤解為j與的夾角為90-C,j與的夾角為90-B) ∴. (2)△ABC為鈍角三角形,不妨設(shè)A>90,過點(diǎn)A作與垂直的單位向量j,則j與的夾角為A-90,j與的夾角為90-C. 由,得j+j=j, 即ACos(90-C)=CCos(A-90), ∴AsinC=CsinA. ∴ 另外,過點(diǎn)C作與垂直的單位向量j,則j與的夾角為90+C,j與夾角為90+B. 同理,可得. ∴(形式1). 綜上所述,正弦定理對(duì)于銳角三角形、直角三角形、鈍角三角形均成立. 師在證明了正弦定理之后,我們來進(jìn)一步學(xué)習(xí)正弦定理的應(yīng)用. (1)正弦定理說明同一三角形中,邊與其對(duì)角的正弦成正比,且比例系數(shù)為同一正數(shù),即存在正數(shù)k使A=ksinA,B=ksinB,C=ksinC; (2) 等價(jià)于 (形式2). 我們通過觀察正弦定理的形式2不難得到,利用正弦定理,可以解決以下兩類有關(guān)三角形問題. ①已知三角形的任意兩角及其中一邊可以求其他邊,如.這類問題由于兩角已知,故第三角確定,三角形唯一,解唯一,相對(duì)容易,課本P4的例1就屬于此類問題. ②已知三角形的任意兩邊與其中一邊的對(duì)角可以求其他角的正弦值,如.此類問題變化較多,我們?cè)诮忸}時(shí)要分清題目所給的條件. 一般地,已知三角形的某些邊和角,求其他的邊和角的過程叫作解三角形. 師接下來,我們通過例題評(píng)析來進(jìn)一步體會(huì)與總結(jié). [例題剖析] 【例1】在△ABC中,已知A=32.0,B=81.8,A=42.9 cm,解三角形. 分析:此題屬于已知兩角和其中一角所對(duì)邊的問題,直接應(yīng)用正弦定理可求出邊B,若求邊C,再利用正弦定理即可. 解:根據(jù)三角形內(nèi)角和定理, C=180-(A+B)=180-(32.0+81.8)=66.2; 根據(jù)正弦定理, b=≈80.1(cm); c=≈74.1(cm). (1)此類問題結(jié)果為唯一解,學(xué)生較易掌握,如果已知兩角和兩角所夾的邊,也是先利用內(nèi)角和180求出第三角,再利用正弦定理. (2)對(duì)于解三角形中的復(fù)雜運(yùn)算可使用計(jì)算器. 【例2】在△ABC中,已知A=20cm,B=28cm,A=40,解三角形(角度精確到1,邊長精確到1 cm). 分析:此例題屬于BsinA<a<b的情形,故有兩解,這樣在求解之后呢,無需作進(jìn)一步的檢驗(yàn),使學(xué)生在運(yùn)用正弦定理求邊、角時(shí),感到目的很明確,同時(shí)體會(huì)分析問題的重要性. 解:根據(jù)正弦定理, sinB =≈0.899 9. 因?yàn)?<B<180,所以B≈64或B≈116. (1)當(dāng)B≈64時(shí), C =180-(A+B)=180-(40+64)=76, C =≈30(cm). (2)當(dāng)B≈116時(shí), C=180-(A+B)=180-(40+116)=24, C=≈13(cm). 通過此例題可使學(xué)生明確,利用正弦定理求角有兩種可能,但是都不符合題意,可以通過分析獲得,這就要求學(xué)生熟悉已知兩邊和其中一邊的對(duì)角時(shí)解三角形的各種情形.當(dāng)然對(duì)于不符合題意的解的取舍,也可通過三角形的有關(guān)性質(zhì)來判斷,對(duì)于這一點(diǎn),我們通過下面的例題來體會(huì). 變式一:在△ABC中,已知A=60,B=50,A=38,求B(精確到1)和C(保留兩個(gè)有效數(shù)字). 分析:此題屬于A≥B這一類情形,有一解,也可根據(jù)三角形內(nèi)大角對(duì)大邊,小角對(duì)小邊這一性質(zhì)來排除B為鈍角的情形. 解:已知BB的情形,有一解,可應(yīng)用正弦定理求解角B后,利用三角形內(nèi)角和為180排除角B為鈍角的情形. 解:∵sinB=≈0.618 6, ∴B≈38或B≈142(舍去). ∴C =180-(A+B)=22. ∴ C =≈12. (1)此題要求學(xué)生注意考慮問題的全面性,對(duì)于角B為鈍角的排除也可以結(jié)合三角形小角對(duì)小邊性質(zhì)而得到. (2)綜合上述例題要求學(xué)生自我總結(jié)正弦定理的適用范圍,已知兩角一邊或兩邊與其中一邊的對(duì)角解三角形. (3)對(duì)于已知兩邊夾角解三角形這一類型,將通過下一節(jié)所學(xué)習(xí)的余弦定理來解. 師為鞏固本節(jié)我們所學(xué)內(nèi)容,接下來進(jìn)行課堂練習(xí): 1.在△ABC中(結(jié)果保留兩個(gè)有效數(shù)字), (1)已知C =,A =45,B=60,求B; (2)已知B=12,A=30,B=120,求A. 解:(1)∵C=180-(A+B)=180-(45+60)=75, , ∴B =≈1.6. (2)∵, ∴A =≈6.9. 點(diǎn)評(píng):此題為正弦定理的直接應(yīng)用,意在使學(xué)生熟悉正弦定理的內(nèi)容,可以讓數(shù)學(xué)成績較弱的學(xué)生進(jìn)行在黑板上解答,以增強(qiáng)其自信心. 2.根據(jù)下列條件解三角形(角度精確到1,邊長精確到1): (1)B=11,A=20,B=30;(2)A=28,B=20,A=45; (3)C =54,B=39,C=115;(4)A=20,B=28,A=120. 解: (1) ∵. ∴sinA =≈0.909 1. ∴A1≈65,A2≈115. 當(dāng)A1≈65時(shí),C1=180-(B+A1)=180-(30+65)=85, ∴C1=≈22. 當(dāng)A2≈115時(shí),C2=180-(B+A2)=180-(30+115)=35, ∴C2=≈13. (2)∵sinB=≈0.505 1, ∴B1≈30,B2≈150. 由于A+B2=45+150>180,故B2≈150應(yīng)舍去(或者由B<A知B<A,故B應(yīng)為銳角). ∴C=180-(45+30)=105. ∴C=≈38. (3)∵, ∴sinB=≈0.654 6. ∴B1≈41,B2≈139. 由于B<C,故B<C,∴B2≈139應(yīng)舍去. ∴當(dāng)B=41時(shí),A=180-(41+115)=24, A=≈24. (4) sinB= =1.212>1. ∴本題無解. 點(diǎn)評(píng):此練習(xí)目的是使學(xué)生進(jìn)一步熟悉正弦定理,同時(shí)加強(qiáng)解三角形的能力,既要考慮到已知角的正弦值求角的兩種可能,又要結(jié)合題目的具體情況進(jìn)行正確取舍. 課堂小結(jié) 通過本節(jié)學(xué)習(xí),我們一起研究了正弦定理的證明方法,同時(shí)了解了向量的工具性作用,并且明確了利用正弦定理所能解決的兩類有關(guān)三角形問題:已知兩角、一邊解三角形;已知兩邊和其中一邊的對(duì)角解三角形. 布置作業(yè) (一)課本第10頁習(xí)題1.1 第1、2題. (二)預(yù)習(xí)內(nèi)容:課本P5~P 8余弦定理 (1)復(fù)習(xí)余弦定理證明中所涉及的有關(guān)向量知識(shí). (2)余弦定理如何與向量產(chǎn)生聯(lián)系. (3)利用余弦定理能解決哪些有關(guān)三角形問題. 板書設(shè)計(jì) 正弦定理 1.正弦定理: 2.證明方法: 3.利用正弦定理,能夠解決兩類問題: (1)平面幾何法 (1)已知兩角和一邊 (2)向量法 (2)已知兩邊和其中一邊的對(duì)角 教學(xué)反思 本章內(nèi)容是處理三角形中的邊角關(guān)系,與初中學(xué)習(xí)的三角形的邊與角的基本關(guān)系有密切的聯(lián)系,與已知三角形的邊和角相等判定三角形全等的知識(shí)也有著密切的聯(lián)系.教科書在引入正弦定理內(nèi)容時(shí),讓學(xué)生從已有的幾何知識(shí)出發(fā),提出探究性問題“在任意三角形中有大邊對(duì)大角,小邊對(duì)小角的邊角關(guān)系.我們是否能得到這個(gè)邊、角的關(guān)系準(zhǔn)確量化的表示呢?”在引入余弦定理內(nèi)容時(shí),提出探究性問題“如果已知三角形的兩條邊及其所夾的角,根據(jù)三角形全等的判定方法,這個(gè)三角形是大小、形狀完全確定的三角形.我們?nèi)匀粡牧炕慕嵌葋硌芯窟@個(gè)問題,也就是研究如何從已知的兩邊和它們的夾角計(jì)算出三角形的另一邊和兩個(gè)角的問題”.這樣,用聯(lián)系的觀點(diǎn),從新的角度看過去的問題,使學(xué)生對(duì)于過去的知識(shí)有了新的認(rèn)識(shí),同時(shí)使新知識(shí)建立在已有知識(shí)的堅(jiān)實(shí)基礎(chǔ)上,形成良好的知識(shí)結(jié)構(gòu).- 1.請(qǐng)仔細(xì)閱讀文檔,確保文檔完整性,對(duì)于不預(yù)覽、不比對(duì)內(nèi)容而直接下載帶來的問題本站不予受理。
- 2.下載的文檔,不會(huì)出現(xiàn)我們的網(wǎng)址水印。
- 3、該文檔所得收入(下載+內(nèi)容+預(yù)覽)歸上傳者、原創(chuàng)作者;如果您是本文檔原作者,請(qǐng)點(diǎn)此認(rèn)領(lǐng)!既往收益都?xì)w您。
下載文檔到電腦,查找使用更方便
9.9 積分
下載 |
- 配套講稿:
如PPT文件的首頁顯示word圖標(biāo),表示該P(yáng)PT已包含配套word講稿。雙擊word圖標(biāo)可打開word文檔。
- 特殊限制:
部分文檔作品中含有的國旗、國徽等圖片,僅作為作品整體效果示例展示,禁止商用。設(shè)計(jì)者僅對(duì)作品中獨(dú)創(chuàng)性部分享有著作權(quán)。
- 關(guān) 鍵 詞:
- 2019-2020年人教版高中數(shù)學(xué)必修五教案:1-1-1 正弦定理 2019 2020 年人教版 高中數(shù)學(xué) 必修 教案 正弦 定理
鏈接地址:http://www.3dchina-expo.com/p-6250788.html